スレタイ 箱入り無数目を語る部屋29(あほ二人の”アナグマの姿焼き"Part3w) (290レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
205
(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 06/14(土)08:56 ID:036MevG8(2/3) AAS
>>204 補足の補足
徳永 伸一氏のまとまったサイトが見つからない
なので、代用として 下記を提供します

google検索:統計(医療統計)前期 第 回 site:外部リンク:www.tmd.ac.jp
(注:これで 数十のヒットがあります。必要な人は ここから手で探すか、あるいは必要キーワードのみで 別の人の資料を検索するかして)

(抜粋)
統計? 第1回 序説〜確率 - 東京医科歯科大学
省16
15: 01/15(水)11:34 ID:ZCTGHyhi(15/19) AAS
つづき

さて
1)決定番号d は、>>278に 書いたように
 >>205 都築暢夫 広島大 の意味で、
多項式環 F[x]から、一つ d-1次多項式 f(x)を選んだことに対応することは, すでに述べた
(簡単に要約すると、1列の可算無限列 R^N を形式的冪級数(つまりは形式的冪級数F[[x]]の元))
 と見て、一つの同値類で 形式的冪級数で
省26
16: 01/15(水)11:35 ID:ZCTGHyhi(16/19) AAS
つづき

上記のように
決定番号の集合、それは多項式環F[x]の 元である多項式多項式 f(x)が d-1次であるとき 決定番号がdになるのだが
F[x]は、 >>205 都築暢夫 広島大 の意味で、可算無限次元線形空間になる(下記再録)
ゆえに
確率空間における全事象 Ω=決定番号の集合(多項式環F[x]の元 多項式多項式 f(x) の次数の集合)
としたとき、Ωは無限集合ゆえ 確率公理P(Ω)=1を満たせないのです
省31
206: 06/14(土)09:05 ID:pmXx3B9i(1/14) AAS
>>204-205
おまえ>>200-201が読めないの?自閉症くん
病院行けよ
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.022s