雑談はここに書け!【67】 (511レス)
前次1-
抽出解除 レス栞

312
(1): 09/17(水)12:25 ID:p3xZkeay(4/8) AAS
>>299
>>311は間違っていたので書き直し

Σ _{k=0,1,…,+∞}(1/(k!+1)) が有理数であると仮定する
Σ _{k=0,1,…,+∞}(1/(k!+1))
=1+ _{k=2,3,…,+∞}(1/(k!+1))
=1+Σ _{k=2,3,…,+∞}(1/k!)
<1+1/2
省27
313: 09/17(水)12:58 ID:p3xZkeay(5/8) AAS
>>299
正の整数pについて p≧3 を得たから、任意の n≧3 なる整数nに対して
n!+1<2(n!)<(n+1)! であることに注意して、
Aを上から評価すればよくて
>>312の途中のようにAを上から評価すれば
A<…<(p!)/(p!+1)+(p!)/(p+1)!=(2(p!))/(p+1)!<1
が得られて、矛盾が生じる
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 1.184s*