[過去ログ]
スレタイ 箱入り無数目を語る部屋20 (1002レス)
スレタイ 箱入り無数目を語る部屋20 http://rio2016.5ch.net/test/read.cgi/math/1720219614/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
463: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2024/07/22(月) 09:52:17.91 ID:+A91SM8Q >>462 (引用開始) >・一方『記事とは違う攻略法を勝手に前提にして』は > 記事の”攻略法”の成否を論じているのに、 > 前提を”記事の攻略法”が正しいと前提を置いているのです > これ論理破綻ですね 違います 「攻略法Aにより確率99/100以上で勝てる」 の否定は 「攻略法Aにより確率99/100以上で勝てない」 であり、 「攻略法Bにより確率99/100以上で勝てない」 ではない、ということです。 箱の中身を確率変数とするあなたの攻略法Bは列選択を確率変数とする記事の攻略法Aとは異なります。 下らない言いがかりをする暇があるなら早く0の分布を答えてもらえませんか? (引用終り) 詰んでいる 1)いま問題にしているのは、”箱入り無数目戦略に きちんとした数学的裏付けがあるかどうか?” ということですよ 2)>>456で指摘していることは a)選択公理の使用は、測度論の裏付けの保証がない b)決定番号の大小比較から 確率99/100を導くというが 決定番号の大小比較が機能しない場合がある。特に箱が有限n個の列長さの場合>>456 よって、n→∞の場合に確率99/100が真に導けるかは、数学的証明を必要とするのだが、”箱入り無数目戦略”はここを流している c)n→∞のとき、決定番号dは上限無く発散して、非正則分布を成す(>>7ご参照) 非正則分布では平均も標準偏差も発散するので、例えば非正則分布からランダムに取った二つの数d1,d2 の大小確率 P(d1>d2)=1/2 は、正当な確率計算になりません! これが、箱入り無数目トリックです) ということ 繰り返すが いま問題にしているのは、”箱入り無数目戦略に きちんとした数学的裏付けがあるかどうか?” です なお、「0の分布」とか論点ずらしなので、その手には乗りません ;p) http://rio2016.5ch.net/test/read.cgi/math/1720219614/463
467: 132人目の素数さん [] 2024/07/22(月) 13:19:46.67 ID:+A91SM8Q ふっふ、ほっほ 詰みですね ;p) >>464 >>a)選択公理の使用は、測度論の裏付けの保証がない >標本空間Ω={1,2,・・・,100}の各根元事象に確率測度1/100を割り当てればコルモゴロフの公理を満たします。 ・列の長さ、箱の個数nが有限のとき、Ω={1,2,・・・,100}が不成立については >>456に示したよ では、問題のn→∞のときに、都合よくΩ={1,2,・・・,100}を使えるのか? その数学的根拠がないでしょ!w ;p) >> b)決定番号の大小比較から 確率99/100を導くというが >> 決定番号の大小比較が機能しない場合がある。 >つまり決定番号は自然数ではないと言いたいのですか? >自然数であれば全順序なので常に大小比較可能ですよ ・(>>440より再録) (決定番号の)各di (i=1,・・,100) たちは、自然数全体を渡る 自然数全体を渡るとき、集合 自然数Nは 数え上げ測度で→∞に発散するから 非正則分布を成し、確率の公理 標本空間の測度が 1 を満たすことが出来ないのです だから、n→∞のときも 確率 99/100は、言えないってこと (参考) >>7より再録 ai-trend.jp/basic-study/bayes/improper_prior/ AVILEN Inc. 2020 2020/04/14 非正則事前分布とは?〜完全なる無情報事前分布〜 ライター:古澤嘉啓 目次 1 非正則な分布とは?一様分布との比較 2 非正則分布は確率分布ではない!? 3 非正則事前分布は完全なる無情報事前分布 4 まとめ http://rio2016.5ch.net/test/read.cgi/math/1720219614/467
470: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2024/07/22(月) 15:04:46.18 ID:+A91SM8Q >>468 なんか、全く数学的反論になって無いのですが・・ 詰んでますよ http://rio2016.5ch.net/test/read.cgi/math/1720219614/470
472: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2024/07/22(月) 17:55:11.83 ID:+A91SM8Q >>471 >話は逆。 >箱入り無数目が成立することは証明されています。不成立だと言うなら証明の誤りを示してください。 ふっふ、ほっほ あなた、数学のセンスないですね 数学科出身を名乗らない方が良いと思いますよ >>463より再録 詰んでいる 1)いま問題にしているのは、”箱入り無数目戦略に きちんとした数学的裏付けがあるかどうか?” ということですよ 2)>>456で指摘していることは a)選択公理の使用は、測度論の裏付けの保証がない b)決定番号の大小比較から 確率99/100を導くというが 決定番号の大小比較が機能しない場合がある。特に箱が有限n個の列長さの場合>>456 よって、n→∞の場合に確率99/100が真に導けるかは、数学的証明を必要とするのだが、”箱入り無数目戦略”はここを流している c)n→∞のとき、決定番号dは上限無く発散して、非正則分布を成す(>>7ご参照) 非正則分布では平均も標準偏差も発散するので、例えば非正則分布からランダムに取った二つの数d1,d2 の大小確率 P(d1>d2)=1/2 は、正当な確率計算になりません! これが、箱入り無数目トリックです) ということ 繰り返すが いま問題にしているのは、”箱入り無数目戦略に きちんとした数学的裏付けがあるかどうか?” です 追伸 ・数学というのは、他人の”証明”と称するものが、本当に証明足りえているかどうか? そこが出発点じゃないですか? 例えば、テキストに誤植やタイポは日常茶飯事だし 場合によれば、査読出版された論文にもギャップがあるとか 有名な例が、ガウスの代数学の基本定理の博士論文に、現代の目から見ればギャップがあるとか ガロアの第一論文中の補題にも、ギャップがあるとかね (そしてよくあるのが、自分なりの別証明を考えるなど。三平方の定理など数百の別証明があるといいます) ・さて、”箱入り無数目”>>1についてはどうか? 数学セミナーは、査読した論文を掲載する雑誌ではない! そこに掲載されたヨタ記事を、なんで鵜呑みにできるのかが 不思議だし 他人に、それ(鵜呑み)を強要して、自我を張ることが数学だと勘違いしている?? ふしぎな人ですね・・ http://rio2016.5ch.net/test/read.cgi/math/1720219614/472
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.037s