[過去ログ] 数学の抽象化って抽象化ではないよな (96レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
17: 2024/07/04(木)10:01 ID:y/IxkdLu(1/2) AAS
一般に、可換体$A$の部分集合$B$が$A$の四則に関して可換体をなしているとき、$B$は$A$の\textbf{部分体}であると言い、$A$は$B$の\textbf{拡大体}であると言います。$A$の任意の元$a$に対して$B$の元を係数とする0でない多項式$F(X)$で$F(a)=0$を満たすものが存在するとき、$A$は$B$の\textbf{代数拡大}であると言い、そうでない時は\textbf{超越拡大}であると言います。$\mathbb{C}(z)$は$\mathbb{C}$の超越拡大です。$\mathbb{C}$の超越拡大の例としては、不定元$X$の有理式の集合$\mathbb{C}(X)$もそうですし、$\mathbb{C}(z^2)$や$\mathbb{C}(e^z)$などもそうですが、これらの体としての代数的構造は皆同じです。その一方で、$n$個の不定元$X_1,X_2,\dots, X_n$の$\mathbb{C}$係数の有理式の集合$\mathbb{C}(X_1,X_2,\dots,X_n)$は$n$が違えば違う体です。例えば$\mathbb{C}(X_1,X_2)$は$\mathbb{C}(X_1)$という$\mathbb{C}$の超越拡大の$\mathbb{C}(X_1)(X_2)$という超越拡大になっています。
1-
あと 79 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.011s