[過去ログ]
スレタイ 箱入り無数目を語る部屋19 (1002レス)
スレタイ 箱入り無数目を語る部屋19 http://rio2016.5ch.net/test/read.cgi/math/1717503315/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
7: 132人目の素数さん [] 2024/06/04(火) 21:18:31.37 ID:GxSzeiWS つづき さて、上記を補足します 1)いま、加算無限の箱が、iid 独立同分布 とします 箱を、加算無限個の確立変数の族 X1,X2,・・Xi・・ として扱うのが 現代の確率論の常套手段です 2)いま、サイコロ1〜6の数字を入れるならば、任意Xiの的中確率は1/6 コイントス 0,1の数字を入れるならば、的中確率は1/2 もし、区間[0,1]の実数を入れるならば、的中確率は0 もちろん、時枝記事の通り任意実数r∈Rならば やはり、的中確率は0 です 3)ところが、時枝記事では、確立変数の族 X1,X2,・・Xi・・ を100列に並べ替え 数列のしっぽ同値類の類別と、類別の代表を使って、決定番号を決めて 決定番号の大小比較から、ある箱Xjについて、的中確率99/100に改善できる と主張します 4)「そんなバカな!」というのが、上記の主張です マジ基地は無視してさらに補足します 1)時枝記事の決定番号をdとすると、dは1から無限大(∞)までを渡ります このような場合、しばしば非正則分布(正則でない)を成します(下記) 2)非正則分布の場合、全体が無限大に発散して、平均値も無限大になり 分散や標準偏差σなども、無限大に発散します 3)具体例として、テスト回数無限回の合計点で成績評価をする場合を考えます テスト回数が、1回、2回、・・n回、・・ もし、テスト回数が有限なら 例えば100回で1回の満点100点として、総計10,000(1万)点ですが テスト回数が無限回ならば、毎回1点の人の総計も無限大(∞)に発散し 毎回100点満点の人の総計も無限大に発散しまず 試験の点の合計では、毎回1点の人も毎回100点も区別ができなくなります この合計については、平均は無限大、分散や標準偏差σなども無限大に発散します 4)ところで、時枝氏の数学セミナー201511月号の記事では このような非正則分布を成す決定番号を、あたかも平均値や分散・標準偏差σが有限である 正則分布のように扱い、確率 99/100とします これは、全くのデタラメでゴマカシです (参考) https://ai-trend.jp/basic-study/bayes/improper_prior/ AVILEN Inc. 2020 2020/04/14 非正則事前分布とは?〜完全なる無情報事前分布〜 ライター:古澤嘉啓 目次 1 非正則な分布とは?一様分布との比較 2 非正則分布は確率分布ではない!? 3 非正則事前分布は完全なる無情報事前分布 4 まとめ つづく http://rio2016.5ch.net/test/read.cgi/math/1717503315/7
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 995 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s