[過去ログ] スレタイ 箱入り無数目を語る部屋18 (1002レス)
1-

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
994
(3): 2024/06/06(木)12:05 ID:lHR0rM/d(2/2) AAS
>>993
>>何が変化しないのか?
>実数列

意味わからん
高校数学の確率からやり直しだね
下記の美しい物語 反復試行
”例題1
1個のサイコロを4回ふるとき,1の目がちょうど2回出る確率を求めよ。”
これで、1個のサイコロを4回ふるとき、出目は毎回変わってもいいだよ
しらなかったのかな? ;p)

>>同値類の代表の存在は保証する
>ならばいかなる実数列の決定番号も自然数であるから、2つの実数列の決定番号d1,d2は d1>d2, d1=d2, d1<d2 のいずれかである
>d1,d2のいずれかをランダムに選択した方をx、他方をyとすれば、P(x≧y)≧1/2
>測度論があという言いがかりは通用しない。

ここが、箱入り無数目で理解が一番難しいところだよ
時枝氏も、ここで落とし穴にはまり、ドボンになった

(参考)
外部リンク:manabitimes.jp
高校数学の美しい物語
反復試行の確率の公式といろいろな例題
更新 2022/01/15

目次
反復試行の確率とは
反復試行の確率の公式の証明
練習問題
最大値を求める問題
反復試行の確率とは
反復試行とは「同じことを繰り返す」ことです。

例題1
1個のサイコロを4回ふるとき,1の目がちょうど2回出る確率を求めよ。
解答
反復試行の確率の公式で
n=4,k=2,p= 6/1
​ の場合なので,求める確率は
4C2*(1/6)^2*(5/6)^2
である。ここで,
4C2=6
を使って計算すると,
6×1/36×25/36=25/216
※二項係数 nCk
1-
あと 8 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.012s