[過去ログ] 数学の本 第98巻 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
672: 2024/07/17(水)13:37 ID:9JTXPK6/(1/9) AAS
>>668
>行列を基本変形して対角線上に 1 のみが並ぶようにして、その 1 の個数を階数と定義しています。
それ、ブルバキ数学原論で、X’=PXQ(P,Qは可逆行列)のとき、XとX’は同値、という定義の後に
体上の有限次元線形空間の間の階数rの線形写像で、それぞれ適当な基底をとると
1がr個だけ対角に並んだ行列と同値になるとかいう定理が出てくるんで
それを逆手にとって、階数の定義にしたと思われる
ちなみにブルバキ数学原論では行列の列ベクトルが張る線形空間の次元を階数と定義している
673: 2024/07/17(水)13:39 ID:9JTXPK6/(2/9) AAS
>>671
>行列の行空間(列空間)の次元
それ、どういう定義?
674(1): 2024/07/17(水)13:42 ID:9JTXPK6/(3/9) AAS
>>670
ああ、行ベクトル(列ベクトル)が張る空間の次元ってことね
でもどうやってそれを求めるかといえば、結局階段化するんで
そう考えると齋藤の本の定義が最悪どころか最良じゃん、という人もいそうだな
676: 2024/07/17(水)13:48 ID:9JTXPK6/(4/9) AAS
誰だか忘れたけど、数学者の分類で目型と手型があるっていうのがあって
目型の人は「行ベクトル(列ベクトル)が張る空間の次元」とかいう幾何的な定義を好むと思うけど
手型の人は「基本変形して対角線上に 1 のみが並ぶ形にしたときの 1 の個数」とかいう標準形への変換結果みたいた定義を好みそう
でも線形代数に慣れまくると
「そんなん最初はどっちが分かりやすいとかあるかもしれんけど
わかってしまえば物事に対する言い表し方の違いなんだからどうでもええやん」
と思ってしまう
678: 2024/07/17(水)13:50 ID:9JTXPK6/(5/9) AAS
ただ、行列式を使ったランクの定義もあって、それは確かにそうなんだけど
なんかそこまでやるんなら、階段化使ったほうがええやん、というのはある
別に行列式が嫌いなわけではないが、最初から行列式振り回されたら
なんか分からんと思う
679: 2024/07/17(水)13:54 ID:9JTXPK6/(6/9) AAS
>>677
>効率的に計算できることって重要ですか?
>数学ではそういうのは重視しないのではないでしょうか?
切り捨てたものの中に、”金”が入ってることってよくあるよね
まあ、個人的には計算好きだし、うまく整理できると見通しがいいこともあるので
それはそれでありじゃね?と思ったりする
680: 2024/07/17(水)13:58 ID:9JTXPK6/(7/9) AAS
数学でも他のことでもそうだけど
ゴミだと思ってたものの中にお宝があったりする
682: 2024/07/17(水)14:01 ID:9JTXPK6/(8/9) AAS
>>681 その場合、一次独立かどうか、どうやって判定する?
基本的な質問で恐縮だけど、一応
683: 2024/07/17(水)14:08 ID:9JTXPK6/(9/9) AAS
ベクトルを空間の中の矢印として「見る」のか、数の並びとして「扱う」のかで発想が異なる
「見る」人は一時独立なんて見ればわかるやん、で終わっちゃう
「扱う」人はどういう手続きで判定するのかが大事やん、と言い出す
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.031s