分からない問題はここに書いてね 472 (933レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
802(1): 04/05(土)13:29 ID:IOmqT4V+(1/3) AAS
{x_n} を実数列とします。集合 {x_1, x_2, …} は無限集合であるとします。{x_1, x_2, …} は唯一の集積点 x をもつとします。 {x_n} の部分列 {x_m(n)} で x に収束するようなものがあるとします。このとき、 {x_n} は x に収束することを証明してください。
803(1): 04/05(土)17:12 ID:IOmqT4V+(2/3) AAS
{a_n} に同じ数が無数に含まれることがなければ、 {a_n} が a に収束することは、 S が有界で a が S の唯一の集積点であることと同等である。
解析概論に書かれているこの注意を証明して下さい。
807(1): 04/05(土)20:01 ID:IOmqT4V+(3/3) AAS
>>803
S := {a_1, a_2, …} とする。
{a_n} に同じ数が無数に含まれることがなければ、 {a_n} が a に収束することは、 S が有界で a が S の唯一の集積点であることと同等である。
{a_n} が a に収束するとする。
収束する点列は有界だから、 S = {a_1, a_2, …} は有界である。
S に a 以外の集積点 b があるとする。
容易にわかるように、 b に収束する {a_n} の部分列が存在する。
省12
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.026s