[過去ログ] ✧ ✦ ✧ 複素解析4 ✦ ✧ ✦ (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
964: 2024/06/06(木)05:02 ID:c8Ms097X(1/5) AAS
平面上の点を複素数$z=x+iy$の集合とみなしたものを複素平面と言います。複素平面上の点の動きを追跡することによって方程式$z^n+a_1z^{n-1}+a_2z^{n-2}+\cdots+a_n=0$ $(a_j\in\mathbb{C})$が常に複素数解を持つことを示したのはガウスでした。この結果は\textbf{代数学の基本定理}と呼ばれています。ガウスの証明は$n$次多項式$z^n+a_1z^{n-1}+a_2z^{n-2}+\cdots+a_n$が平面から平面への関数とみなせることをふまえています。$n=1$であれば方程式は$z+a_1=0$となり、解が$z=-a_1$であることは直ちに分かりますが、この式から「解の個数が$a_1$の取り方によらずただ1個である。」ということが読み取れれば、一般の$n$に対する証明の方針を立てることができます。
上下前次1-新書関写板覧索設栞歴
あと 38 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.007s