[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ5 http://rio2016.5ch.net/test/read.cgi/math/1687778456/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
819: 132人目の素数さん [] 2023/10/28(土) 20:58:54.90 ID:ADdtMmRC https://doi.org/10.48550/arXiv.1011.3699 http://rio2016.5ch.net/test/read.cgi/math/1687778456/819
820: 132人目の素数さん [] 2023/10/28(土) 23:30:56.61 ID:5Ldn12NP >>819 ありがとう https://dept.math.lsa.umich.edu/~mattiasj/research.html Mattias Jonsson Department of Mathematics, University of Michigan, (I am a professor of mathematics at the University of Michigan) My research spans across some (but not all!) parts of dynamics, geometry and analysis. In analysis and geometry one usually works with real or complex numbers, but it is also possible to use, for instance, p-adic numbers. Doing so leads to non-Archimedean analysis and geometry, in honor (dishonor?) of Archimedes of Syracuse. One of my main interests is in how non-Archimedean objects, such as Berkovich spaces, can be used to study problems where the original problem is phrased in terms of complex or rational numbers. Examples include singularities (of psh functions) in complex analysis and the growth of the arithmetic complexity (height) of orbits of certain polynomial, discrete-time, dynamical systems. I am also interested in developing non-Archimedean geometry in a way parallel to complex geometry. Here is a list of my publications and some lecture notes. For my preprints, see the arXiv. See also google scholar. https://arxiv.org/abs/1011.3699 Mathematics > Algebraic Geometry [Submitted on 16 Nov 2010 (v1), last revised 20 Oct 2011 (this version, v3)] Valuations and asymptotic invariants for sequences of ideals Mattias Jonsson, Mircea Mustata We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space. v3: minor changes, this is the final version, to appear in Ann. Inst. Fourier (Grenoble) http://rio2016.5ch.net/test/read.cgi/math/1687778456/820
825: 132人目の素数さん [] 2023/11/17(金) 18:15:46.61 ID:iqg0G7R1 >>819 GuanとYuanが解いた。 http://rio2016.5ch.net/test/read.cgi/math/1687778456/825
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.033s