[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ5 http://rio2016.5ch.net/test/read.cgi/math/1687778456/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
630: 132人目の素数さん [] 2023/07/13(木) 17:38:35.24 ID:9KLQWdwW メモ ”中野 茂男:「多変数函数論 ─微分幾何学的アプローチ─」, 朝倉書店 (1981)” か、不勉強で見てないな(^^ 中野茂男|HMV&BOOKS online 中野茂男 プロフィール 1923‐1998年。滋賀県生まれ。1945年京都帝国大学理学部卒業。京都大学数理解析研究所名誉教授。専門は代数学、代数幾何学(本データはこの書籍が刊行された当時に掲載されていたものです) 『現代数学への道 ちくま学芸文庫』より https://www.アマゾン 中野 茂男: 本 https://ja.wikipedia.org/wiki/%E5%A4%9A%E5%A4%89%E6%95%B0%E8%A4%87%E7%B4%A0%E9%96%A2%E6%95%B0 多変数複素関数 複素解析(これは n = 1 の場合に当たる理論ではあるが、n > 1 の場合とは一線を画す性質を持つ)と同様、任意の単なる函数を扱うものではなく、正則 (holomorphic) あるいは複素解析的 (complex analytic) な関数、つまり局所的に変数 zi たちの冪級数で書けるような関数を扱う。そのような関数は結局のところ、多項式列の局所一様極限として得られるような関数ということもでき、n 次元コーシー・リーマンの方程式の局所解と言っても同じことであるということが分かる。 つづく http://rio2016.5ch.net/test/read.cgi/math/1687778456/630
631: 132人目の素数さん [] 2023/07/13(木) 17:39:05.17 ID:9KLQWdwW >>630 つづき 歴史的観点 上述のような関数の多くの例は、19世紀の数学においてよく研究されたものであった。例えばアーベル関数やテータ関数の他、ある種の超幾何級数がそのような例として挙げられる。またもちろん、ある複素媒介変数に依存する任意の一変数関数も、そのような例となる。しかしそれらの特徴的な現象は捉えられていなかったため、長年の間、解析学においてその理論の完成は十分ではなかった。ワイエルシュトラスの準備定理は現在では可換環論に分類されるであろう。それは、リーマン面の理論における分岐点の一般化を扱った局所的な描像である分岐を正当化したものである。 1930年代のフリードリヒ・ハルトークスと岡潔の成果により、一般理論の構築がなされ始めた。その当時の同分野における他の研究者には、ハインリヒ・ベーンケ、ペーター・トゥレン(英語版)およびカール・シュタイン(英語版)がいる。ハルトークスは、n > 1 のとき任意の解析的関数 f:C^n → C 対してすべての孤立特異点は除去可能であるなど、いくつかの基本的な結果を証明した。ここで当然、周回積分と類似の概念は扱いが難しくなる。n = 2 の場合だと、ある点の周りの積分は、(実4次元で考えるため)3次元多様体上で行わなければならず、また2つの別々の複素変数についての逐次周回(線)積分は2次元曲面上の二重積分として扱われる必要がある。このことは、留数計算が非常に異なる性質を持つようになることを意味する。 つづく http://rio2016.5ch.net/test/read.cgi/math/1687778456/631
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s