[過去ログ] ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
624: 2023/07/13(木)10:58 ID:9KLQWdwW(1/12) AAS
age
625: 2023/07/13(木)11:02 ID:9KLQWdwW(2/12) AAS
>>623
なんんか不便になりました(^^
626(1): 2023/07/13(木)11:03 ID:9KLQWdwW(3/12) AAS
スレ主です
昨晩見てたのでメモ
//www.tvキングダム.jp/schedule/101024202307121957.action
解体キングダム 巨大重機で“見えない壁”を攻略せよ[解][字]
7/12 (水) 19:57 ~ 20:42 (45分)
NHK総合1・東京(Ch.1)
【出演】田中道子
省11
627: 2023/07/13(木)11:04 ID:9KLQWdwW(4/12) AAS
>>626
なんか
妙にURLが通らない
なんだかね
628: 2023/07/13(木)17:03 ID:9KLQWdwW(5/12) AAS
スレ主です
謎のプロ数学者さんには無関係だが
メモ貼るよ
(秋月-中野-大沢か。なるほど)
外部リンク:www.mathnet.ru
Ohsawa, Takeo
外部リンク[php]:www.genealogy.math.ndsu.nodak.edu
省23
630(1): 2023/07/13(木)17:38 ID:9KLQWdwW(6/12) AAS
メモ
”中野 茂男:「多変数函数論 ─微分幾何学的アプローチ─」, 朝倉書店 (1981)”
か、不勉強で見てないな(^^
中野茂男|HMV&BOOKS online
中野茂男 プロフィール
1923‐1998年。滋賀県生まれ。1945年京都帝国大学理学部卒業。京都大学数理解析研究所名誉教授。専門は代数学、代数幾何学(本データはこの書籍が刊行された当時に掲載されていたものです)
『現代数学への道 ちくま学芸文庫』より
省6
631(1): 2023/07/13(木)17:39 ID:9KLQWdwW(7/12) AAS
>>630
つづき
歴史的観点
上述のような関数の多くの例は、19世紀の数学においてよく研究されたものであった。例えばアーベル関数やテータ関数の他、ある種の超幾何級数がそのような例として挙げられる。またもちろん、ある複素媒介変数に依存する任意の一変数関数も、そのような例となる。しかしそれらの特徴的な現象は捉えられていなかったため、長年の間、解析学においてその理論の完成は十分ではなかった。ワイエルシュトラスの準備定理は現在では可換環論に分類されるであろう。それは、リーマン面の理論における分岐点の一般化を扱った局所的な描像である分岐を正当化したものである。
1930年代のフリードリヒ・ハルトークスと岡潔の成果により、一般理論の構築がなされ始めた。その当時の同分野における他の研究者には、ハインリヒ・ベーンケ、ペーター・トゥレン(英語版)およびカール・シュタイン(英語版)がいる。ハルトークスは、n > 1 のとき任意の解析的関数
f:C^n → C
対してすべての孤立特異点は除去可能であるなど、いくつかの基本的な結果を証明した。ここで当然、周回積分と類似の概念は扱いが難しくなる。n = 2 の場合だと、ある点の周りの積分は、(実4次元で考えるため)3次元多様体上で行わなければならず、また2つの別々の複素変数についての逐次周回(線)積分は2次元曲面上の二重積分として扱われる必要がある。このことは、留数計算が非常に異なる性質を持つようになることを意味する。
省1
632(1): 2023/07/13(木)17:39 ID:9KLQWdwW(8/12) AAS
>>631
つづき
1945年以降、アンリ・カルタンのフランスでのセミナーにおける重要な研究や、ハンス・グラウエルト(英語版)およびラインホルト・レンメルト(英語版)のドイツでの重要な研究によって、理論の描像は著しく変化した。多くの問題、特に解析接続についての問題が、明らかにされた。ここで一変数の理論との主要な違いが明らかになる。すなわち、1変数の場合はC 内の任意の開連結集合 D に対して、その境界を超えて解析接続できない関数を見つけることができるが、多変数n > 1 の場合にはそのようなことはいえないのである。実際、そのような性質を持つ領域 D はあるていど特殊なものになる(擬凸性と呼ばれる条件をもつ)。最大限解析接続された関数の自然な定義域は、シュタイン多様体と呼ばれ、その性質は層係数コホモロジー群が消えるというものである。実は、(特に)岡の仕事を、理論の定式化において層を首尾一貫して使用することを導いたよりはっきりした基本へとすることが必要だったのだ。
さらに進んで、解析幾何(紛らわしいが、これは解析函数の零点の幾何に関する名称であり、初中等教育で習うような解析幾何学のことではない)や多変数の保型形式、偏微分方程式などに応用できる基本的な理論が構築された。また複素構造の変形理論(英語版)や複素多様体は、小平邦彦やドナルド・スペンサーによって一般的な形で記述された。さらに、セールの高名な論文GAGAにおいて、解析幾何 (geometrie analytique) を代数幾何 (geometrie algebrique) へと橋渡す観点が突き止められた。
つづく
633(1): 2023/07/13(木)17:40 ID:9KLQWdwW(9/12) AAS
>>632
つづき
カール・ジーゲルは、新たな多変数複素関数論の対象になる関数がほとんどない、すなわち、理論における特殊関数的な側面は層に従属するものであったことに、不平をもらしたことが知られている。数論に対する興味は、確かに、モジュラー形式の特定の一般化にある。その古典的な代表例は、ヒルベルトモジュラー形式(英語版)やジーゲルモジュラー形式(英語版)である。今日においてそれらは、代数群と関連付けられている。(それぞれ GL(2) の総実代数体のヴェイユ制限(英語版)と、シンプレクティック群である。)それらは、保型表現が解析関数から生じうるものである。ある意味でこれはジーゲルとは矛盾しない。現代の理論はそれ自身の異なる方向性を持つものである。
その後の発展として、超関数 (hyperfunction) の理論や楔の刃の定理(英語版)が挙げられるが、それらはいずれも場の量子論からいくらかの着想を得たものである。その他、バナッハ環の理論など、多変数複素関数を利用する分野がいくつかある。
C^n 空間
最も簡単なシュタイン多様体は、複素数の n-組からなる空間 Cn(複素 n-次元数空間)である。これは複素数体 C 上の n-次元ベクトル空間とみることができて、つまりR 上の次元が 2n である[1]。したがって、集合および位相空間として、C^n は R^2n と等しく、その位相次元は 2n である。
つづく
634: 2023/07/13(木)17:40 ID:9KLQWdwW(10/12) AAS
>>633
つづき
座標に依らない形で述べるならば、複素数体上の任意のベクトル空間は、その2倍の次元を持つ実ベクトル空間と考えることができる。ここに複素構造は、虚数単位 i によるスカラー倍を定義する線型作用素 J(J^2 = -I をみたす)によって特定される。
そのような任意の空間は、実空間として向き付けられている。
研究者
・岡潔
・大沢健夫
省4
635: 2023/07/13(木)18:00 ID:9KLQWdwW(11/12) AAS
>>629
>Akizuki-Sono-Kawai-Fujisawa-Christoffel-Kummer-Scherk-Bessel-Gauss
ありがとうございます。
Christoffelさんか
アインシュタインの一般相対性理論で出てきましたね
クリストッフェル記号(下記)
中野 茂男先生?
省9
638: 2023/07/13(木)18:34 ID:9KLQWdwW(12/12) AAS
>>637
ありがとうございます。
その二つの論文の話は
中野 茂男:「多変数函数論 ─微分幾何学的アプローチ─」, 朝倉書店 (1981).
の中で、ネタとして使われていそうですね
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.047s