[過去ログ]
ガロア第一論文と乗数イデアル他関連資料スレ5 (1002レス)
ガロア第一論文と乗数イデアル他関連資料スレ5 http://rio2016.5ch.net/test/read.cgi/math/1687778456/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
65: 132人目の素数さん [sage] 2023/07/01(土) 17:34:16.61 ID:uNBgRQTB >>63 馬鹿呼ばわりしろとはいってないが だいたい、YJを「馬鹿」呼ばわりしたあんたがそれいうか? 自分こそ新左翼の暴力活動家だろ 自分の行為に後ろめたさを感じない? 鬼畜だな http://rio2016.5ch.net/test/read.cgi/math/1687778456/65
152: 132人目の素数さん [sage] 2023/07/02(日) 09:41:48.61 ID:cNGWG32s OTのような売数学奴にだけは 百万遍死んでも絶対になりたくないもんだ http://rio2016.5ch.net/test/read.cgi/math/1687778456/152
289: 132人目の素数さん [sage] 2023/07/03(月) 16:42:06.61 ID:En4/yMUN >n≧2のときnは或る m≧1 により n=2m と表され、C^n は R^{2m} と見なせる これがおっちゃんのフィンガープリント。 複素数空間を常に実2m次元と考えたがる。 しかも初歩からとんでもない誤解をしている。 http://rio2016.5ch.net/test/read.cgi/math/1687778456/289
333: 132人目の素数さん [] 2023/07/04(火) 11:13:59.61 ID:/K4mC13y >>17 >L^2拡張定理の応用面に重点を置いた講演をした。 独り言ですが 下記が、理解できてないが なんか面白そうですね L2 extensionが、L2拡張なのでしょうかね?(^^ (参考) https://en.wikipedia.org/wiki/Ohsawa%E2%80%93Takegoshi_L2_extension_theorem Ohsawa?Takegoshi L2 extension theorem In several complex variables, the Ohsawa?Takegoshi L2 extension theorem is a fundamental result concerning the holomorphic extension of an L^{2}-holomorphic function defined on a bounded Stein manifold (such as a pseudoconvex compact set in \mathbb {C} ^{n} of dimension less than n) to a domain of higher dimension, with a bound on the growth. It was discovered by Takeo Ohsawa and Kensho Takegoshi in 1987,[1] using what have been described as ad hoc methods involving twisted Laplace?Beltrami operators, but simpler proofs have since been discovered.[2] Many generalizations and similar results exist, and are known as theorems of Ohsawa?Takegoshi type. See also ・Suita conjecture note 1. Ohsawa & Takegoshi (1987) 2.Siu (2011) http://rio2016.5ch.net/test/read.cgi/math/1687778456/333
516: 132人目の素数さん [sage] 2023/07/08(土) 16:04:52.61 ID:5D12U7Zc >>507 「箱入り無数目」も 「箱の中身が*である確率を求める問題」 じゃないって気づけよ 知裸見媚平(ちらみこぴへい)クン http://rio2016.5ch.net/test/read.cgi/math/1687778456/516
678: 132人目の素数さん [] 2023/07/15(土) 08:23:04.61 ID:CXkqKxb9 中野[N]と藤木[Fk]は弱擬凸領域上で Andreotti-Vesentini流の完備K\"ahler多様体上の消滅定理を踏まえて、 解析空間のブローダウン条件を解明した。 http://rio2016.5ch.net/test/read.cgi/math/1687778456/678
692: 132人目の素数さん [] 2023/07/15(土) 08:43:56.61 ID:CXkqKxb9 >>691 そこで定理1の応用を捜したところ、より詳しく次の事実が判明した。 http://rio2016.5ch.net/test/read.cgi/math/1687778456/692
820: 132人目の素数さん [] 2023/10/28(土) 23:30:56.61 ID:5Ldn12NP >>819 ありがとう https://dept.math.lsa.umich.edu/~mattiasj/research.html Mattias Jonsson Department of Mathematics, University of Michigan, (I am a professor of mathematics at the University of Michigan) My research spans across some (but not all!) parts of dynamics, geometry and analysis. In analysis and geometry one usually works with real or complex numbers, but it is also possible to use, for instance, p-adic numbers. Doing so leads to non-Archimedean analysis and geometry, in honor (dishonor?) of Archimedes of Syracuse. One of my main interests is in how non-Archimedean objects, such as Berkovich spaces, can be used to study problems where the original problem is phrased in terms of complex or rational numbers. Examples include singularities (of psh functions) in complex analysis and the growth of the arithmetic complexity (height) of orbits of certain polynomial, discrete-time, dynamical systems. I am also interested in developing non-Archimedean geometry in a way parallel to complex geometry. Here is a list of my publications and some lecture notes. For my preprints, see the arXiv. See also google scholar. https://arxiv.org/abs/1011.3699 Mathematics > Algebraic Geometry [Submitted on 16 Nov 2010 (v1), last revised 20 Oct 2011 (this version, v3)] Valuations and asymptotic invariants for sequences of ideals Mattias Jonsson, Mircea Mustata We study asymptotic jumping numbers for graded sequences of ideals, and show that every such invariant is computed by a suitable real valuation of the function field. We conjecture that every valuation that computes an asymptotic jumping number is necessarily quasi-monomial. This conjecture holds in dimension two. In general, we reduce it to the case of affine space and to graded sequences of valuation ideals. Along the way, we study the structure of a suitable valuation space. v3: minor changes, this is the final version, to appear in Ann. Inst. Fourier (Grenoble) http://rio2016.5ch.net/test/read.cgi/math/1687778456/820
825: 132人目の素数さん [] 2023/11/17(金) 18:15:46.61 ID:iqg0G7R1 >>819 GuanとYuanが解いた。 http://rio2016.5ch.net/test/read.cgi/math/1687778456/825
969: 132人目の素数さん [sage] 2024/01/14(日) 02:22:29.61 ID:WT7Agqld 固有空間 http://rio2016.5ch.net/test/read.cgi/math/1687778456/969
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.043s