[過去ログ]
純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
純粋・応用数学・数学隣接分野(含むガロア理論)13 http://rio2016.5ch.net/test/read.cgi/math/1674527723/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
922: 132人目の素数さん [] 2023/07/30(日) 19:25:23.60 ID:Rf2iGg9G >>601 >一つの箱に確率pで数が入れられるとする。また、一つの同値類内で考える >lemma 3:確率p=0で、可算有限長さ一点コンパクト化の数列 sN+において、決定番号ωの確率1、ω未満(つまり有限n)の確率0 >lemma 4:確率p=0で、可算有限長さの数列 sN = (s1,s2,s3 ,・・・)において、決定番号ω未満(つまり有限n)の確率0 >証明:lemma 3で、sN+からωを除いて、数列 sNとして適用すればよい lemma3は正しいが、lemma4は誤り sN+からΩを除いたら、決定番号ωとなる場合が存在しなくなる つまり、証明は誤り http://rio2016.5ch.net/test/read.cgi/math/1674527723/922
923: 132人目の素数さん [] 2023/07/30(日) 19:30:49.15 ID:IpiBUMr/ >>921 文盲に分からないのは当たり前 http://rio2016.5ch.net/test/read.cgi/math/1674527723/923
924: 132人目の素数さん [] 2023/07/30(日) 20:02:09.25 ID:Rf2iGg9G p=0とする nを自然数としたとき、snで尻尾同値な2列について、 n番目の項を除いても、s(n-1)で尻尾同値となる確率は0 sN+で尻尾同値な2列について、 ω番目の項を除いても、sNで尻尾同値となる確率は0 ただ、有限列の場合と異なるのは、 s(n-1)では、決定番号n-1となる確率は1だが sNでは、確率1となるような決定番号ω-1は存在しない、ということ 実際は、snの各項は0番目の項、1番目の項、・・・、n-1番目の項と名付けるべきで その場合には、決定番号の最大値はn-1となる (s(n-1)の決定番号の最大値はn-2) sN+は、s(ω+1)であって、決定番号の最大値はω sNは、sωであって、この場合、決定番号の最大値は存在しない なぜならωは極限順序数だから さらにωは(濃度の)始順序数でもある つまりωより小さな順序数は、濃度もωより小さい またn<ωとなる順序数について nより大きな順序数の全体集合はωと同濃度である http://rio2016.5ch.net/test/read.cgi/math/1674527723/924
925: 132人目の素数さん [] 2023/07/30(日) 20:07:21.88 ID:Rf2iGg9G >>417 >”固定”なるものは確率論でいう一つの試行でしかない 箱入り無数目の確率計算ではそうなっていないので誤り 正解は>>632の言う通り 「 1〜100 のいずれかをランダムに選ぶ」 http://rio2016.5ch.net/test/read.cgi/math/1674527723/925
926: 132人目の素数さん [] 2023/07/30(日) 20:21:51.15 ID:Rf2iGg9G 「箱入り無数目」で、箱の中身は各試行ごとに入れ替えたりしない、とすれば 「箱の中身の確率分布」は全く考える必要がない (実際、確率計算はそのような前提の上でなされている) また、箱の数を非可算個にしてしまえば、100列用意する必要もない ただ、非可算個の箱の中から1個選べばいい 箱の番号(注:中身に非ず)は[0,1]の実数とする これで確率測度は定まった なお、[0,1]の実数は、整列定理により整列できるので問題ない さて、(可算番目)尻尾同値により、代表と異なる中身をもつ箱はたかだか可算個である したがって、そのような箱を選ぶ確率は0である ゆえに、適当に箱を選んでも当たる確率は1である http://rio2016.5ch.net/test/read.cgi/math/1674527723/926
927: 132人目の素数さん [] 2023/07/30(日) 20:34:51.20 ID:Rf2iGg9G 関数 f,g∈(0,1]→X について ある正の実数ε>0が存在して 0<x<=εなら、f(x)=g(x)となるとき fとgは近傍同値とする その場合、任意の近傍同値類の関数fについて、同値類の代表関数Fとの間に ある正の実数Ε>0が存在して、0<x<=Εなら、f(x)=F(x)となる したがって、いかなる関数fについても、 近傍同値類とその代表関数Fがわかり しかもfに関してΕより小さいxを見つけることができれば f(x)=F(x)となるのでf(x)の値を当てられる ただそれだけの話 http://rio2016.5ch.net/test/read.cgi/math/1674527723/927
928: 132人目の素数さん [] 2023/07/30(日) 20:37:58.57 ID:Rf2iGg9G >>927で、Xはいかなる集合でもよい、というのがポイント (自明でない問題とするためには、Xは2個以上の要素を持つとすればいい) http://rio2016.5ch.net/test/read.cgi/math/1674527723/928
929: 132人目の素数さん [] 2023/07/30(日) 20:38:51.30 ID:Rf2iGg9G >>927で、Xはいかなる集合もよい、というのがポイント (自明でない問題とするためには、Xは2個以上の要素を持つとすればいい) http://rio2016.5ch.net/test/read.cgi/math/1674527723/929
930: 132人目の素数さん [] 2023/07/30(日) 20:42:51.17 ID:Rf2iGg9G 今宵はこれまで http://rio2016.5ch.net/test/read.cgi/math/1674527723/930
931: 132人目の素数さん [] 2023/07/30(日) 21:19:01.14 ID:esnUGRo8 結局724は問題の体をなしていないことが分かった http://rio2016.5ch.net/test/read.cgi/math/1674527723/931
932: 132人目の素数さん [] 2023/07/30(日) 21:24:02.69 ID:IpiBUMr/ >>931 負け惜しみ乙 http://rio2016.5ch.net/test/read.cgi/math/1674527723/932
933: 132人目の素数さん [] 2023/07/30(日) 21:36:34.03 ID:2UJHJvqn >>931 >結局724は問題の体をなしていないことが分かった ご苦労さまです スレ主です 724の出題者が、何にも分かってないってことでは、ないでしょうか?w http://rio2016.5ch.net/test/read.cgi/math/1674527723/933
934: 132人目の素数さん [] 2023/07/30(日) 21:43:19.72 ID:esnUGRo8 こういう結論でよいようですね http://rio2016.5ch.net/test/read.cgi/math/1674527723/934
935: 132人目の素数さん [] 2023/07/30(日) 21:50:09.12 ID:IpiBUMr/ >>934 問題の体をなしてないことにすれば自尊心保てるよねw http://rio2016.5ch.net/test/read.cgi/math/1674527723/935
936: 132人目の素数さん [] 2023/07/30(日) 21:52:44.46 ID:IpiBUMr/ >>933 サルは誤答してるよね>>741 「問題の体をなしてない(キリッ)」にシレっと乗っかろうとしてるけどさw やはりサル知恵だねw http://rio2016.5ch.net/test/read.cgi/math/1674527723/936
937: 132人目の素数さん [] 2023/07/30(日) 22:00:19.83 ID:IpiBUMr/ まあ「どんな実数を入れるかはまったく自由」の意味も分からない方にとっては問題の体をなしてないのでしょうw ご自分が理解できる・解ける問題じゃないと問題の体をなしてないようですねw http://rio2016.5ch.net/test/read.cgi/math/1674527723/937
938: 132人目の素数さん [] 2023/07/30(日) 22:24:38.99 ID:IpiBUMr/ 0897132人目の素数さん 2023/07/30(日) 08:34:02.46ID:esnUGRo8 >>895 例えば n番目の箱にn回サイコロを振って出た目の数を入れる というのは 許されるのかどうか 0899132人目の素数さん 2023/07/30(日) 09:12:34.73ID:esnUGRo8 >>898 つまりサイコロを振って入れるのでも構わないということ? 0907132人目の素数さん 2023/07/30(日) 10:10:54.73ID:esnUGRo8 >>905 「まったく自由」の数学的な意味を明確化したい 「どんな実数を入れるかはまったく自由」の意味が分からないようだとさすがに箱入り無数目は無理ですね ご自身のレベルに合ったスレを見つける努力をされた方がよろしいのではないでしょうか http://rio2016.5ch.net/test/read.cgi/math/1674527723/938
939: 132人目の素数さん [sage] 2023/07/31(月) 01:15:03.45 ID:Cgy3PWyO >>920 丸めて蕎麦屋酒と読み替える語彙も無いのか此のガキ爺は (𓁹‿𓁹)ニチャァ http://rio2016.5ch.net/test/read.cgi/math/1674527723/939
940: 132人目の素数さん [] 2023/07/31(月) 05:54:17.72 ID:jznoxopE >>938 わかったからもういい http://rio2016.5ch.net/test/read.cgi/math/1674527723/940
941: 132人目の素数さん [] 2023/07/31(月) 07:45:17.26 ID:KGw9oDo5 >>940 何を分かったの? http://rio2016.5ch.net/test/read.cgi/math/1674527723/941
942: 132人目の素数さん [] 2023/07/31(月) 08:29:53.84 ID:jznoxopE おまえの言いたいことは分かった http://rio2016.5ch.net/test/read.cgi/math/1674527723/942
943: 132人目の素数さん [sage] 2023/07/31(月) 08:43:16.22 ID:4Almmw4D 本スレは以下のスレに統合します ガロア第一論文と乗数イデアル他関連資料スレ5 https://rio2016.5ch.net/test/read.cgi/math/1687778456/ http://rio2016.5ch.net/test/read.cgi/math/1674527723/943
944: 132人目の素数さん [sage] 2023/07/31(月) 08:43:35.85 ID:4Almmw4D 本スレは以下のスレに統合します ガロア第一論文と乗数イデアル他関連資料スレ5 https://rio2016.5ch.net/test/read.cgi/math/1687778456/ http://rio2016.5ch.net/test/read.cgi/math/1674527723/944
945: 132人目の素数さん [sage] 2023/07/31(月) 08:43:48.98 ID:4Almmw4D 本スレは以下のスレに統合します ガロア第一論文と乗数イデアル他関連資料スレ5 https://rio2016.5ch.net/test/read.cgi/math/1687778456/ http://rio2016.5ch.net/test/read.cgi/math/1674527723/945
946: 132人目の素数さん [sage] 2023/07/31(月) 08:45:49.69 ID:4Almmw4D >>943-945 http://rio2016.5ch.net/test/read.cgi/math/1674527723/946
947: 132人目の素数さん [sage] 2023/07/31(月) 08:47:47.93 ID:4Almmw4D 現在数学板に複数ある「SET Aスレ」は統合化いたします http://rio2016.5ch.net/test/read.cgi/math/1674527723/947
948: 132人目の素数さん [sage] 2023/07/31(月) 08:48:07.04 ID:4Almmw4D 御協力お願い致します http://rio2016.5ch.net/test/read.cgi/math/1674527723/948
949: 132人目の素数さん [sage] 2023/07/31(月) 08:49:40.88 ID:4Almmw4D 現在数学板に複数ある「SET Aスレ」は一つに統合いたします http://rio2016.5ch.net/test/read.cgi/math/1674527723/949
950: 132人目の素数さん [sage] 2023/07/31(月) 08:50:01.11 ID:4Almmw4D 御協力お願い致します http://rio2016.5ch.net/test/read.cgi/math/1674527723/950
951: 132人目の素数さん [] 2023/07/31(月) 08:53:09.00 ID:jznoxopE では埋めよう http://rio2016.5ch.net/test/read.cgi/math/1674527723/951
952: 132人目の素数さん [sage] 2023/07/31(月) 08:54:55.17 ID:4Almmw4D >>951 よろしくお願いします http://rio2016.5ch.net/test/read.cgi/math/1674527723/952
953: 132人目の素数さん [sage] 2023/07/31(月) 08:57:02.76 ID:4Almmw4D 「SET Aスレ」統合化に御協力お願いします SET A氏設立のスレッドは複数ありますが、 どこでも同様の展開となっているため 様々な無駄が発生しております スレを1つにすることで無駄を削減できます 何卒、統合化に御協力お願いいたします http://rio2016.5ch.net/test/read.cgi/math/1674527723/953
954: 132人目の素数さん [] 2023/07/31(月) 09:05:07.98 ID:jznoxopE Abstract. A theorem asserting the existence of proper holomorphic maps with connected fibers to an open subset of C N from a locally pseudoconvex bounded domain in a complex manifold will be proved under the negativity of the canonical bundle on the boundary. Related results of Takayama on the holomorphic embeddability and holomorphic convexity of pseudoconvex manifolds will be extended under similar curvature conditions. http://rio2016.5ch.net/test/read.cgi/math/1674527723/954
955: 132人目の素数さん [] 2023/07/31(月) 09:08:22.88 ID:jznoxopE Abstract. A theorem asserting the existence of proper holomorphic maps with connected fibers to an open subset of C^N from a locally pseudoconvex bounded domain in a complex manifold will be proved under the negativity of the canonical bundle on the boundary. Related results of Takayama on the holomorphic embeddability and holomorphic convexity of pseudoconvex manifolds will be extended under similar curvature conditions. http://rio2016.5ch.net/test/read.cgi/math/1674527723/955
956: 132人目の素数さん [] 2023/07/31(月) 09:13:58.31 ID:jznoxopE This is a continuation of [Oh-5] where the following was proved among other things. Theorem 1.1. Let M be a complex manifold and let Ω be a proper bounded domain in M with C^2-smooth pseudoconvex boundary ∂Ω. Assume that M admits a K¨ahler metric and the canonical bundle K_M of M admits a fiber metric whose curvature form is negative on a neighborhood of ∂Ω. Then there exists a holomorphic map with connected fibers from Ω to C^N for some N ∈ ℕ which is proper onto the image. The main purpose of the present article is to strengthen it by removing the K¨ahlerness assumption (see §2). For that, the proof of Theorem 0.1 given in [Oh-5] by an application of the L^2 vanishing theorem on complete K¨ahler manifolds will be replaced by an argument which is more involved but also seems to be basic (see §1). http://rio2016.5ch.net/test/read.cgi/math/1674527723/956
957: 132人目の素数さん [] 2023/07/31(月) 09:17:00.22 ID:jznoxopE More precisely, the proof is an application of the finite-dimensionality of L^2 ¯∂-cohomology groups on M with coefficients in line bundles whose curvature form is positive at infinity. Recall that the idea of exploiting the finite-dimensionality for producing holomorphic sections originates in a celebrated paper [G] of Grauert. Shortly speaking, it amounts to finding infinitely many linearly independent C^∞ sections s1, s2, . . . of the bundle in such a way that some nontrivial linear combination of ¯∂s1, ¯∂s2, . . . , say ?^N_{k=1} c_k¯∂sk(ck ∈ C), is equal to ¯∂u for some u which is more regular than ?^N_{k=1} cksk. http://rio2016.5ch.net/test/read.cgi/math/1674527723/957
958: 132人目の素数さん [] 2023/07/31(月) 09:19:07.58 ID:jznoxopE 訂正 ¯∂s1,¯∂s2, . . . , say ΣN_{k=1} c_k¯∂sk(ck ∈ C), is equal to ¯∂u for some u which is more regular than ΣN_{k=1} cksk. http://rio2016.5ch.net/test/read.cgi/math/1674527723/958
959: 132人目の素数さん [] 2023/07/31(月) 09:20:45.34 ID:jznoxopE This works if one can attach mutually different orders of singularities to sk for instance as in [G] where the holomorphic convexity of strongly pseudoconvex domains was proved. http://rio2016.5ch.net/test/read.cgi/math/1674527723/959
960: 132人目の素数さん [] 2023/07/31(月) 09:24:42.05 ID:jznoxopE Although such a method does not directly work for the weakly pseudoconvex cases, the method of solving the ¯∂-equation with L^2 estimates is available to produce a nontrivial holomorphic section of the form Σ^N_{k=1} cksk −u by appropriately estimating u. More precisely speaking, instead of specifying singularities of sk, one finds a solution u which has more zeros than Σ^N_{k=1} ck¯∂sk. For that, finite-dimensionality of the L^2 cohomology with respect to singular fiber metrics would be useful. http://rio2016.5ch.net/test/read.cgi/math/1674527723/960
961: 132人目の素数さん [] 2023/07/31(月) 09:26:19.46 ID:jznoxopE However, this part of analysis does not seem to be explored a lot. For instance, the author does not know whether or not Nadel’s vanishing theorem as in [Na] can be extended as a finiteness theorem with coefficients in the multiplier ideal sheaves of singular fiber metrics under an appropriate positivity assumption of the curvature current near infinity. http://rio2016.5ch.net/test/read.cgi/math/1674527723/961
962: 132人目の素数さん [] 2023/07/31(月) 09:28:09.44 ID:jznoxopE So, instead of analyzing the L^2 cohomology with respect to singular fiber metrics, we shall avoid the singularities by simply removing them from the manifold and consider the L^2 cohomology of the complement, which turns out to have similar finite-dimensionality property because of the L^2 estimate on complete Hermitian manifolds. Such an argument is restricted to the cases where the singularities of the fiber metic are isolated. As a technique, it was first introduced in [D-Oh-3] to estimate the Bergman distances. It is useful for other purposes and applied also in [Oh-3,4,5,6], but will be repeated here for the sake of the reader’s convenience. http://rio2016.5ch.net/test/read.cgi/math/1674527723/962
963: 132人目の素数さん [] 2023/07/31(月) 09:41:53.67 ID:jznoxopE Once one has infinitely many linearly independent holomorphic sections of a line bundle L → M, one can find singular fiber metrics of L by taking the reciprocal of the sum of squares of the moduli of local trivializations of the sections. Very roughly speaking, this is the main trick to derive the conclusion of Theorem 0.1 from K_M|∂Ω < 0. http://rio2016.5ch.net/test/read.cgi/math/1674527723/963
964: 132人目の素数さん [] 2023/07/31(月) 09:43:46.51 ID:jznoxopE In fact, for the bundles L with L|∂Ω > 0, the proof of dim H^{n,0}(Ω, L^m) = ∞ for m >> 1 will be given in detail here (see Theorem 1.4, Theorem 1.5 and Theorem 1.6). The rest is acturally similar as in the case K_M < 0. We shall also generalize the following theorems of Takayama. http://rio2016.5ch.net/test/read.cgi/math/1674527723/964
965: 132人目の素数さん [] 2023/07/31(月) 09:45:14.41 ID:jznoxopE Theorem 1.2. (cf. [T-1]) Weakly 1-complete manifolds with positive line bundles are embeddable into CP^N (N >> 1). Theorem 1.3. (cf. [T-2]) Pseudoconvex manifolds with negative canonical bundles are holomorphically convex. http://rio2016.5ch.net/test/read.cgi/math/1674527723/965
966: 132人目の素数さん [] 2023/07/31(月) 09:58:43.90 ID:jznoxopE Let M be a complex manifold. We shall say that M is a C^k pseudoconvex manifold if M is equipped with a C^k plurisubharmonic exhaustion function, say φ. C^∞ (resp. C^0) pseudoconvex manifolds are also called weakly 1-complete (resp. pseudoconvex) manifolds. The sublevel sets {x; φ(x) < c} will be denoted by Mc. Theorem 0.2 and Theorem 0.3 are respectively a generalization of Kodaira’s embedding theorem and that of Grauert’s characterization of Stein manifolds. http://rio2016.5ch.net/test/read.cgi/math/1674527723/966
967: 132人目の素数さん [] 2023/07/31(月) 09:59:24.57 ID:jznoxopE Our intension here is to draw similar conclusions by assuming the curvature conditions only on the complement of a compact subset of the manifold in quetion http://rio2016.5ch.net/test/read.cgi/math/1674527723/967
968: 132人目の素数さん [] 2023/07/31(月) 10:01:42.55 ID:jznoxopE Theorem 0.2 will be generalized as follows. Theorem 1.4. Let (M, φ) be a connected and noncompact C^2 pseudoconvex manifold which admits a holomorphic Hermitian line bundle whose curvature form is positive on M - Mc. Then there exists a holomorphic embedding of M - Mc into CP^N which extends to M meromorphically. http://rio2016.5ch.net/test/read.cgi/math/1674527723/968
969: 132人目の素数さん [] 2023/07/31(月) 10:02:51.03 ID:jznoxopE Theorem 0.3 will be extended to Theorem 1.5. A C^2 pseudoconvex manifold (M, φ) is holomorphically convex if the canonical bundle is negative outside a compact set. This extends Grauert’s theorem asserting that strongly 1-convex manifold are holomorphically convex. http://rio2016.5ch.net/test/read.cgi/math/1674527723/969
970: 132人目の素数さん [] 2023/07/31(月) 10:05:12.95 ID:jznoxopE The proofs will be done by combining the method of Takayama with an L^2 variant of the Andreotti-Grauert theory [A-G] on complete Hermitian manifolds whose special form needed here will be recalled in§3. In §4 we shall extend Theorem 0.4 for the domains Ω as in Theorem 0.1. Whether or not Ω in Theorem 0.1 is holomorphically convex is still open. http://rio2016.5ch.net/test/read.cgi/math/1674527723/970
971: 132人目の素数さん [] 2023/07/31(月) 10:05:50.76 ID:jznoxopE The proof of the desired improvement of Theorem 0.1 will rely on the following. http://rio2016.5ch.net/test/read.cgi/math/1674527723/971
972: 132人目の素数さん [] 2023/07/31(月) 10:10:31.08 ID:jznoxopE Theorem 2.1. (cf. [Oh-4, Theorem 0.3 and Theorem 4.1]) Let M be a complex manifold, let Ω ⊊ M be a relatively compact pseudoconvex domain with a C^2-smooth boundary and let B be a holomorphic line bundle over M with a fiber metric h whose curvature form is positive on a neighborhood of ∂Ω. Then there exists a positive integer m0 such that for all m ≥ m0 dimH^{0,0}(Ω, B^m) = ∞ and that, for any compact set K ⊂ Ω and for any positive number R, one can find a compact set K˜ ⊂ Ω such that for any point x ∈ Ω -K˜ there exists an element s of H^{0,0}(Ω, B^m) satisfying sup_{K} |s|_h^m < 1 and |s(x)|_h^m > R. http://rio2016.5ch.net/test/read.cgi/math/1674527723/972
973: 132人目の素数さん [] 2023/07/31(月) 10:12:10.83 ID:jznoxopE We shall give the proof of Theorem 1.1 in this section for the convenience of the reader, after recalling the basic L^2 estimates in a general setting. http://rio2016.5ch.net/test/read.cgi/math/1674527723/973
974: 132人目の素数さん [] 2023/07/31(月) 10:13:51.75 ID:jznoxopE Let (M, g) be a complete Hermitian manifold of dimension n and let (E, h) be a holomorphic Hermitian vector bundle over M. Let C^{p,q}(M, E) denote the space of E-valued C^∞ (p, q)-forms on M and letC^{p,q}_0(M, E) = {u ∈ C^{p,q}(M, E); suppu is compact}. http://rio2016.5ch.net/test/read.cgi/math/1674527723/974
975: 132人目の素数さん [] 2023/07/31(月) 10:15:52.02 ID:jznoxopE Given a C^2 function φ : M → R, let L^{p,q}_{(2),φ}(M, E) (= L^{p,q}_{(2),g,φ}(M, E)) be the space of E-valued square integrable measurable (p, q)-forms on M with respect to g and he^{−φ} . http://rio2016.5ch.net/test/read.cgi/math/1674527723/975
976: 132人目の素数さん [] 2023/07/31(月) 10:17:16.60 ID:jznoxopE The definition of L^{p,q}_{(2),φ}(M, E) will be naturally extended for continuous metrics and continuous weights. http://rio2016.5ch.net/test/read.cgi/math/1674527723/976
977: 132人目の素数さん [] 2023/07/31(月) 10:27:13.55 ID:jznoxopE Recall that L^{p,q}_{(2),φ}(M, E) is identified with the completion of C^{p,q}_0(M, E) with respect to the L^2 norm ||u||φ := (∫_Me^{−φ}|u|^2_{g,h}dVg)1/2. Here dVg := 1/n!ω^n for the fundamental form ω = ω_g of g. http://rio2016.5ch.net/test/read.cgi/math/1674527723/977
978: 132人目の素数さん [] 2023/07/31(月) 10:29:53.47 ID:jznoxopE More explicitly, when E is given by a system of transition functions eαβ with respect to a trivializing covering {Uα} of M and h is given as a system of C∞ positive definite Hermitian matrix valued functions hα on Uα satisfying hα =t eβαhβeβα on Uα ∩ Uβ, |u|2 g,hdVg is defined by tuαhα ∧ ∗uα, where u = {uα} with uα = eαβuβ on Uα ∩ Uβ and ∗ stands for the Hodge’s star operator with respect to g. We put ∗¯u = ∗u so that tuαhα ∧ ∗uα =tuαhα ∧ ∗¯uα http://rio2016.5ch.net/test/read.cgi/math/1674527723/978
979: 132人目の素数さん [] 2023/07/31(月) 10:30:48.69 ID:jznoxopE Let us denote by ¯∂ (resp. ∂) the complex exterior derivative of type (0, 1) (resp. (1, 0)). Then the correspondence uα 7→ ¯∂uα defines a linear differential operator ¯∂ : C p,q(M, E) → C p,q+1(M, E). The Chern connection Dh is defined to be ¯∂ + ∂h, where ∂h is defined by uα 7→ h −1 α ∂(hαuα). Since ¯∂ 2 = ∂ 2 h = ∂ ¯∂ + ¯∂∂ = 0, there exists a E ∗ ⊗ E-valued (1, 1)-form Θh such that D2 hu = Θh ∧u holds for all u ∈ C p,q(M, E). Θh is called the curvature form of h. Note that Θhe−φ = Θh+IdE ⊗∂ ¯∂φ. Θh is said to be positive (resp. semipositive) at x ∈ M if Θh = ?n j,k=1 Θjk¯dzj ∧ dzk in terms of a local coordinate (z1, . . . , zn) LEVI PROBLEM UNDER THE NEGATIVITY 5 around x and (Θjk¯(x))j,k = (Θµ νjk¯ (x))j,k,µ,ν is positive (semipositive) in the sense (of Nakano) that the quadratic form ?( ? µ hµκ¯Θ µ νjk¯ )(x)ξ νj ξ κk is positive definite (resp. positive semidefinite). http://rio2016.5ch.net/test/read.cgi/math/1674527723/979
980: 132人目の素数さん [] 2023/07/31(月) 10:32:02.15 ID:jznoxopE Θ > 0 (resp. ≥0) for an E^∗ ⊗ E-valued (1,1)-form Θ will mean the positivity (resp. semipositivity) in this sense. http://rio2016.5ch.net/test/read.cgi/math/1674527723/980
981: 132人目の素数さん [] 2023/07/31(月) 10:32:55.60 ID:jznoxopE Whenever there is no fear of confusion, as well as the Levi form ∂¯∂φ of φ, Θ_h will be identified with a Hermitian form along the fibers of E ⊗ TM, where TM stands for the holomorphic tangent bundle of M. http://rio2016.5ch.net/test/read.cgi/math/1674527723/981
982: 132人目の素数さん [] 2023/07/31(月) 10:33:40.62 ID:jznoxopE By an abuse of notation, ¯∂ (resp. ∂he−φ ) will also stand for the maximal closed extension of ¯∂|C p,q 0 (M,E) (resp. ∂he−φ |C p,q 0 (M,E) ) as a closed operator from L p,q (2),φ (M, E) to L p,q+1 (2),φ (M, E) (resp. L p+1,q (2),φ (M, E)). The adjoint of ¯∂ (resp. ∂he−φ ) will be denoted by ¯∂ ∗ = ¯∂ ∗ g,he−φ (resp. ∂ ∗ he−φ ). We recall that ∂ ∗ he−φ = −∗¯∂∗¯ holds as a differential operator acting on C p,q(M, E), so that ∂ ∗ he−φ will be also denoted by ∂ ∗ . By Dom¯∂ (resp. Dom¯∂ ∗ ) we shall denote the domain of ¯∂ (resp. ¯∂ ∗ ). http://rio2016.5ch.net/test/read.cgi/math/1674527723/982
983: 132人目の素数さん [] 2023/07/31(月) 10:34:15.81 ID:jznoxopE We put H p,q (2),φ (M, E)(= H p,q (2),g,φ (M, E)) = Ker ( ¯∂ : L p,q (2),φ (M, E) → L p,q+1 (2),φ (M, E) ) Im ( ¯∂ : L p,q−1 (2),φ (M, E) → L p,q (2),φ (M, E) ) and H p,q φ (M, E) = Ker ¯∂ ∩ Ker ¯∂ ∗ ∩ L p,q (2),φ (M, E). http://rio2016.5ch.net/test/read.cgi/math/1674527723/983
984: 132人目の素数さん [] 2023/07/31(月) 10:34:53.86 ID:jznoxopE Let Λ = Λg denote the adjoint of the exterior multiplication by ω. Then Nakano’s formula (2.2) ¯∂ ¯∂ ∗ + ¯∂ ∗ ¯∂ − ∂h∂ ∗ − ∂ ∗ ∂h = √ −1(ΘhΛ − ΛΘh) holds if dω = 0. Here Θh also stands for the exterior multiplication by Θh from the left hand side. Hence, for any open set Ω ⊂ M such that dω|Ω = 0 and for any u ∈ C n,q 0 (Ω, E), one has (2.3) k ¯∂uk 2 φ + k ¯∂ ∗uk 2 φ ≥ ( √ −1(Θh + IdE ⊗ ∂ ¯∂φ)Λu, u)φ. Here (u, w)φ stands for the inner product of u and v with respect to (g, he−φ ). http://rio2016.5ch.net/test/read.cgi/math/1674527723/984
985: 132人目の素数さん [] 2023/07/31(月) 10:35:28.01 ID:jznoxopE Here (u, w)φ stands for the inner product of u and v with respect to (g, he−φ ). The following direct consequence of (1.3) is important for our purpose. http://rio2016.5ch.net/test/read.cgi/math/1674527723/985
986: 132人目の素数さん [] 2023/07/31(月) 10:36:40.94 ID:jznoxopE Proposition 2.1. Let M, E, g, h and φ be as above. Assume that there exists a compact set K ⊂ M such that dωg = 0 holds on M \ K. Then there exist a compact set K′ containing K and a constant C such that K′ and C do not depend on the choice of φ and ( √ −1(Θh+IdE⊗∂ ¯∂φ)Λu, u)φ ≤ C ( k ¯∂uk 2 φ + k ¯∂ ∗uk 2 φ + ∫ K′ e −φ |u| 2 g,hdVg ) holds for any u ∈ C n,q 0 (M, E) (q ≥ 0). http://rio2016.5ch.net/test/read.cgi/math/1674527723/986
987: 132人目の素数さん [] 2023/07/31(月) 10:37:12.65 ID:jznoxopE From Proposition 1.1 one infers http://rio2016.5ch.net/test/read.cgi/math/1674527723/987
988: 132人目の素数さん [] 2023/07/31(月) 10:37:44.26 ID:jznoxopE Proposition 2.2. Let (M, E, g, h, φ, K) and (K′ , C) be as above. Assume moreover that one can find a constant C0 > 0 such that C0(Θh + IdE ⊗∂ ¯∂φ)−IdE ⊗g ≥ 0 holds on M \K. Then there exists a constant C ′ depending only on C, K′ and C0 such that kuk 2 φ ≤ C ′ ( k ¯∂uk 2 φ + k ¯∂ ∗uk 2 φ + ∫ K′ e −φ |u| 2 g,hdVg ) holds for any u ∈ C n,q 0 (M, E) (q ≥ 1). http://rio2016.5ch.net/test/read.cgi/math/1674527723/988
989: 132人目の素数さん [] 2023/07/31(月) 10:38:25.31 ID:jznoxopE By a theorem of Gaffney, the estimate in Proposition 1.2 implies the following. Proposition 2.3. In the situation of Proposition 1.2, kuk 2 φ ≤ C ′ ( k ¯∂uk 2 φ + k ¯∂ ∗uk 2 φ + ∫ K′ e −φ |u| 2 g,hdVg ) holds for all u ∈ L n,q (2),φ (M, E) ∩ Dom¯∂ ∩ Dom¯∂ ∗ (q ≥ 1). http://rio2016.5ch.net/test/read.cgi/math/1674527723/989
990: 132人目の素数さん [] 2023/07/31(月) 10:38:55.22 ID:jznoxopE Recall that the following was proved in [H] by a basic argument of functional analysis. http://rio2016.5ch.net/test/read.cgi/math/1674527723/990
991: 132人目の素数さん [] 2023/07/31(月) 10:39:37.54 ID:jznoxopE Theorem 2.2. (Theorem 1.1.2 and Theorem 1.1.3 in [H]) Let H1 and H2 be Hilbert spaces and let T : H1 → H2 be a densely defined closed operator. Let H3 be another Hilbert space and let S : H2 → H3 be a densely defined closed operator such that ST = 0. Then a necessary and sufficient condition for the ranges RT , RS of T, S both to be closed is that there exists a constant C such that (2.4) kgkH2 ≤ C(kT ∗ gkH1 +kSgkH3 ); g ∈ DT ∗ ∩DS, g⊥(NT ∗ ∩NS), where DT ∗ and DS denote the domains of T ∗ and S, respectively, and NT ∗ = KerT ∗ and NS = KerS. Moreover, if one can select a strongly convergent subsequence from every sequence gk ∈ DT ∗ ∩DS with kgkkH2 bounded and T ∗ gk → 0 in H1, Sgk → 0 in H3, then NS/RT ∼= NT ∗ ∩NS holds and NT ∗ ∩ NS is finite dimensional. http://rio2016.5ch.net/test/read.cgi/math/1674527723/991
992: 132人目の素数さん [] 2023/07/31(月) 10:40:12.07 ID:jznoxopE Hence we obtain http://rio2016.5ch.net/test/read.cgi/math/1674527723/992
993: 132人目の素数さん [] 2023/07/31(月) 10:40:52.24 ID:jznoxopE Theorem 2.3. In the situation of Proposition 1.2, dimH n,q (2),φ (M, E) < ∞ and H n,q φ (M, E) ∼= H n,q (2),φ (M, E) hold for all q ≥ 1. http://rio2016.5ch.net/test/read.cgi/math/1674527723/993
994: 132人目の素数さん [] 2023/07/31(月) 10:41:28.54 ID:jznoxopE It is an easy exercise to deduce from Theorem 1.3 that every strongly pseudoconvex manifold is holomorphically convex (cf. [G] or [H]). We are going to extend this application to the domains with weaker pseudoconvexity. http://rio2016.5ch.net/test/read.cgi/math/1674527723/994
995: 132人目の素数さん [] 2023/07/31(月) 10:41:57.49 ID:jznoxopE For any Hermitian metric g on M, a C 2 function ψ : M → R is called g-psh (g-plurisubharmonic) if g + ∂ ¯∂ψ ≥ 0 holds everywhere. Then Theorem 1.3 can be restated as follows. http://rio2016.5ch.net/test/read.cgi/math/1674527723/995
996: 132人目の素数さん [] 2023/07/31(月) 10:42:29.70 ID:jznoxopE Theorem 2.4. Let (M, g) be an n-dimensional complete Hermitian manifold and let (E, h) be a Hermitian holomorphic vector bundle over M. Assume that there exists a compact set K ⊂ M such that Θh − IdE ⊗ g ≥ 0 and dωg = 0 hold on M \ K. Then, for any g-psh function φ on M and for any ε ∈ (0, 1), dim H n,q (2),εφ (M, E) < ∞ and H n,q εφ (M, E) ∼= H n,q (2),εφ (M, E) for q ≥ 1 http://rio2016.5ch.net/test/read.cgi/math/1674527723/996
997: 132人目の素数さん [] 2023/07/31(月) 10:43:00.40 ID:jznoxopE §2 Infinite dimensionality and bundle convexity theorems By applying Theorem 1.4, we shall show at first the following. Theorem 2.5. Let (M, E, g, h) be as in Theorem 1.4 and let xµ (µ = 1, 2, . . .) be a sequence of points in M without accumulation points. Assume that there exists a (1 − ε)g-psh function φ on M \ {xµ} ∞ µ=1 for some ε ∈ (0, 1) such that e −φ is not integrable on any neighborhood of xµ for any µ. Then dim H n,0 (M, E) = ∞. http://rio2016.5ch.net/test/read.cgi/math/1674527723/997
998: 132人目の素数さん [] 2023/07/31(月) 10:43:37.26 ID:jznoxopE Proof. We put M′ = M \{xµ} ∞ µ=1 and let ψ be a bounded C ∞ ε 2 g-psh function on M′ such that g ′ := g + ∂ ¯∂ψ is a complete metric on M′ . Take sµ ∈ C n,0 (M, E) (µ ∈ N) in such a way that |sµ(xν)|g,h = δµν and ∫ M′ e −φ | ¯∂sµ| 2 g,hdVg < ∞. Since ∫ M′ e −φ−ψ | ¯∂sµ| 2 g ′ ,hdVg ′ ≤ ∫ M′ e −φ−ψ | ¯∂sµ| 2 g,hdVg and dim H n,1 (2),g′ ,φ (M′ , E) < ∞ by Theorem 1.4, one can find a nontrivial finite linear combination of ¯∂sµ, say v = ?cµ ¯∂sµ, which is in the range of L n,0 (2),φ (M′ , E) ∂¯ −→ L n,1 (2),g′ ,φ (M′ , E). http://rio2016.5ch.net/test/read.cgi/math/1674527723/998
999: 132人目の素数さん [] 2023/07/31(月) 10:44:29.89 ID:jznoxopE Then take u ∈ L n,0 (2),φ (M′ , E) satisfying ¯∂u = v and put s = ?cµsµ − u. Clearly s extends to a nonzero element of Hn,0 (M, E) which is zero at xµ except for finitely many µ. Hence, one can find mutually disjoint finite subsets Σν 6= ϕ (ν = 1, 2, . . .) of N and nonzero holomorphic sections sν of E such that sν(xµ) = 0 if µ /∈ Σν, so that dim Hn,0 (M, E) = ∞ http://rio2016.5ch.net/test/read.cgi/math/1674527723/999
1000: 132人目の素数さん [] 2023/07/31(月) 10:45:25.12 ID:jznoxopE This observation will be basic for the proofs of Theorems 0.4 and 0.5. http://rio2016.5ch.net/test/read.cgi/math/1674527723/1000
1001: 1001 [] ID:Thread このスレッドは1000を超えました。 新しいスレッドを立ててください。 life time: 187日 23時間 10分 2秒 http://rio2016.5ch.net/test/read.cgi/math/1674527723/1001
1002: 1002 [] ID:Thread 5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。 運営にご協力お願いいたします。 ─────────────────── 《プレミアム会員の主な特典》 ★ 5ちゃんねる専用ブラウザからの広告除去 ★ 5ちゃんねるの過去ログを取得 ★ 書き込み規制の緩和 ─────────────────── 会員登録には個人情報は一切必要ありません。 月300円から匿名でご購入いただけます。 ▼ プレミアム会員登録はこちら ▼ https://premium.5ch.net/ ▼ 浪人ログインはこちら ▼ https://login.5ch.net/login.php http://rio2016.5ch.net/test/read.cgi/math/1674527723/1002
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.021s