[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
601
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/07/21(金)16:22 ID:L/LQf6Gh(2/6) AAS
>>600
つづき
6)一つの箱に確率pで数が入れられるとする。また、一つの同値類内で考える
 lemma 1:有限長さnの数列 snで、決定番号n-1以下の確率p、nの確率1-p
 証明:決定番号n-1以下の場合、n-1番目が一致しているべきで確率p、nの確率は余事象で1-p
 lemma 2:確率p=0で、有限長さnの数列 snで、決定番号n-1以下の確率0、nの確率1
 証明:lemma 1で、p=0とすればよい
省20
606: 2023/07/21(金)17:12 ID:XyIiumdn(5/14) AAS
>>601
> lemma 4:確率p=0で、可算有限長さの数列 sN = (s1,s2,s3 ,・・・)において、決定番号ω未満(つまり有限n)の確率0
可算有限長さは可算無限長さの間違いでいいですか?
任意の実数列の決定番号はその定義から自明に自然数なので間違い。
607: 2023/07/21(金)17:17 ID:XyIiumdn(6/14) AAS
>>601
>8)結論として、「箱入り無数目」の想定している有限の決定番号{d1,d2,・・d100}などは
> p=0で確率0の事象であり、仮に99/100が得られても、(99/100)*0=0であり
> 「箱入り無数目」の決定番号を使った確率計算は、無意味である QED
いいえ違います。
出題列が固定されている(すなわち100列も100列の決定番号も固定されている)前提なので、
有限の決定番号{d1,d2,・・d100}などはp=1で確率1の事象であり、99/100が得られたら、(99/100)*1=99/100であり
省1
612
(4): 2023/07/21(金)20:55 ID:Dpf9+zTy(2/6) AAS
>>600-601
スレ主です
<「箱入り無数目」の決定番号を潰す話>
に加えて
<開けた箱と 開けていない箱の比較の話>
をしよう
これが、時枝「箱入り無数目」のトリックの一つ
省20
707
(6): 2023/07/26(水)13:33 ID:gX0O22uw(3/5) AAS
>>699
>>1)可算無限長数列の決定番号の期待値は、無限大に発散している
>この期待値の確率空間を教えてもらえますか?

ゼミの先生の疑問符が、ついたようだ>>700
とりあえず私はスルーw

1)まず、任意の決定番号 dが、自然数Nの元であることは、>>701の2)に書いた
 逆に、任意のd∈Nをとって、dから先が一致する同値類内の無限列を構成出来て(d-1番目は不一致)
省27
922: 2023/07/30(日)19:25 ID:Rf2iGg9G(1/8) AAS
>>601
>一つの箱に確率pで数が入れられるとする。また、一つの同値類内で考える
>lemma 3:確率p=0で、可算有限長さ一点コンパクト化の数列 sN+において、決定番号ωの確率1、ω未満(つまり有限n)の確率0
>lemma 4:確率p=0で、可算有限長さの数列 sN = (s1,s2,s3 ,・・・)において、決定番号ω未満(つまり有限n)の確率0
>証明:lemma 3で、sN+からωを除いて、数列 sNとして適用すればよい

lemma3は正しいが、lemma4は誤り 
sN+からΩを除いたら、決定番号ωとなる場合が存在しなくなる
省1
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.269s*