[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
225
(2): 2023/03/16(木)08:06 ID:viNWkpRf(1/5) AAS
メモ
外部リンク[html]:www.riken.jp
理化学研究所 2023年3月15日
基礎科学特別研究員インタビュー② 38歳でたどり着いた数学者としての大きな第一歩
理研には、国際的に活躍する研究者の育成を目指し、若手研究者が自ら設定した研究課題を自由な発想で主体的に研究できる「基礎科学特別研究員制度」があります。1989年に始まったこの制度は、現在公募中の2024年度採用で35回目となります。これを機に、各分野で活躍する先輩たちと現役にインタビューしました。第2回は、数理創造プログラム(iTHEMS)の佐野 岳人 基礎科学特別研究員です。
佐野 岳人(サノ・タケト)
数理創造プログラム
省5
227
(2): 2023/03/16(木)08:14 ID:viNWkpRf(3/5) AAS
>>226 訂正 220→>>225
関連
外部リンク:ja.wikipedia.org
コバノフホモロジー( Khovanov homology)は、鎖複体のホモロジーとしてできる向きづけられた結び目の不変量である。コバノフホモロジーはジョーンズ多項式のカテゴリ化(英語版)として考えられる。
コバノフホモロジーは1990年代の終わりに、ミハイル・コバノフ(英語版)(Mikhail Khovanov)により導入された。彼は当時はカリフォルニア大学デービス校に在籍しており、現在はコロンビア大学に所属している。

概要
結び目もしくは絡み目 L を表現する図形 D に、コバノフ括弧 [D]、これは次数付きベクトル空間の鎖複体、を割り当てる。すると、ジョーンズ多項式の構成の中でのカウフマン括弧の類似物となる。次に、[D] を(次数付きベクトル空間の中の)一連の次数シフトと(鎖複体の中の)高さシフトにより正規化して、新しい複体 C(D) を得る。この複体のホモロジーは L の不変量であることが分かり、その次数付きオイラー標数は L のジョーンズ多項式であることが分かる。
省8
230
(1): 2023/03/16(木)09:10 ID:YDR7EwZZ(1) AAS
>>225-229 真逆だね
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.467s*