[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
上下前次1-新
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
979: 2023/07/31(月)10:30 ID:jznoxopE(29/50) AAS
 Let us denote by ¯∂ (resp. ∂) the complex exterior derivative of 
 type (0, 1) (resp. (1, 0)). Then the correspondence uα 7→ ¯∂uα defines 
 a linear differential operator ¯∂ : C 
 p,q(M, E) → C 
 p,q+1(M, E). The 
 Chern connection Dh is defined to be ¯∂ + ∂h, where ∂h is defined by 
 uα 7→ h 
 −1 
 α ∂(hαuα). Since ¯∂ 
 2 = ∂ 
 2 
 h = ∂ 
 ¯∂ + ¯∂∂ = 0, there exists a 
 E 
 ∗ ⊗ E-valued (1, 1)-form Θh such that D2 
 hu = Θh ∧u holds for all u ∈ 
 C 
 p,q(M, E). Θh is called the curvature form of h. Note that Θhe−φ = 
 Θh+IdE ⊗∂ 
 ¯∂φ. Θh is said to be positive (resp. semipositive) at x ∈ M 
 if Θh = 
 ?n 
 j,k=1 Θjk¯dzj ∧ dzk in terms of a local coordinate (z1, . . . , zn) 
 LEVI PROBLEM UNDER THE NEGATIVITY 5 
 around x and (Θjk¯(x))j,k = (Θµ 
 νjk¯ 
 (x))j,k,µ,ν is positive (semipositive) in 
 the sense (of Nakano) that the quadratic form 
 ?( 
 ? 
 µ 
 hµκ¯Θ 
 µ 
 νjk¯ 
 )(x)ξ 
 νj ξ 
 κk 
 is positive definite (resp. positive semidefinite). 
上下前次1-新書関写板覧索設栞歴
あと 23 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 2.627s*