[過去ログ]
純粋・応用数学・数学隣接分野(含むガロア理論)13 (1002レス)
純粋・応用数学・数学隣接分野(含むガロア理論)13 http://rio2016.5ch.net/test/read.cgi/math/1674527723/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
1: 132人目の素数さん [] 2023/01/24(火) 11:35:23.13 ID:7EkKRL+N クレレ誌: https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。 (引用終り) そこで 現代の純粋・応用数学・数学隣接分野(含むガロア理論)スレとして 新スレを立てる(^^; <前スレ> 純粋・応用数学・数学隣接分野(含むガロア理論)12 https://rio2016.5ch.net/test/read.cgi/math/1671460269/ <関連姉妹スレ> ガロア第一論文及びその関連の資料スレ https://rio2016.5ch.net/test/read.cgi/math/1615510393/ 箱入り無数目を語る部屋 Inter-universal geometry と ABC予想 (応援スレ) 68 https://rio2016.5ch.net/test/read.cgi/math/1659142644/ IUTを読むための用語集資料スレ2 https://rio2016.5ch.net/test/read.cgi/math/1606813903/ 現代数学の系譜 カントル 超限集合論他 3 https://rio2016.5ch.net/test/read.cgi/math/1595034113/ <過去スレの関連(含むガロア理論)> ・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84 https://rio2016.5ch.net/test/read.cgi/math/1582200067/ ・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83 https://rio2016.5ch.net/test/read.cgi/math/1581243504/ つづく http://rio2016.5ch.net/test/read.cgi/math/1674527723/1
2: 132人目の素数さん [] 2023/01/24(火) 11:36:30.94 ID:7EkKRL+N つづき <数学隣接分野について> https://planck.exblog.jp/14987060/ 大栗博司のブログ 2010年 08月 21日 フィールズ賞 今週はインドのハイデラバードで国際数学者会議 (ICM) が開かれ、フィールズ賞受賞者が発表されました。1990年以来の過去5回のICMでは、フィールズ賞受賞者のおよそ4割が場の量子論や超弦理論に関係する分野で研究をされていたので、今回はどうなるのだろうかと思っていました。 今回の受賞者のひとりはスタニスラフ・スミルノフさんで、ある種の2次元の統計模型がスケール極限で共形対称性を持つことを示し、物理学者のジョン・カーディさんの予想していた公式に数学的証明を与えました。場の量子論に数学的基礎を与えることは数理物理学の長年の課題ですが、2次元の共形場の理論では確実な進歩が起きています。前回の2006年のICMでフィールズ賞を受賞されたウェンデリン・ウェルナーさんの業績も2次元の共形場の理論に関係するものでした。 スミルノフさんはCaltechの大学院の卒業生なので、今回の受賞はCaltechにとってもうれしいニュースでした。 もうひとりの受賞者のセドリック・ビラニさんへの授賞対象は気体分子の運動論で、非平衡の状態からどのように平衡状態への移行が起きるのかの理解を進められたのだそうです。 物理学の提起する問題は、依然として数学の新しい発展を触発し続けているようです。 (引用終り) 下記フィールズ賞 2022年のコパン氏は、statistical physics関連 マリナ・ヴィヤゾフスカ氏も、E_{8} latticeは、超弦理論と関連があります。また、24次元はLeech lattice関連で下記”conformal field theory describing bosonic string theory”と関連しています なので、フィールズ賞 2022年も、物理学との関連ありです つづく http://rio2016.5ch.net/test/read.cgi/math/1674527723/2
3: 132人目の素数さん [] 2023/01/24(火) 11:37:02.89 ID:7EkKRL+N つづき また、IMUの新総裁 中島啓氏は、”紹介:理論物理学に起源を持つゲージ理論を数学的に研究することを中心テーマと している。また、この研究がカッツ・ムーディー・リー環や、その変形と関係 することから、これらの対象の表現論も同時に研究している。 主要な成果として、次のようなものを得た。(略) 箙多様体と名づけた・・”https://www.kurims.kyoto-u.ac.jp/ja/list/nakajima.html と記されています なので、数学隣接分野も取り上げます! (平たく言えば「なんでもあり」ですw) (参考) https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A3%E3%83%BC%E3%83%AB%E3%82%BA%E8%B3%9E フィールズ賞 2022年(オンライン開催[注釈 3])[21] ユーゴー・デュミニル=コパン(Hugo Duminil-Copin, 1985年 - )フランスの旗 フランス For solving longstanding problems in the probabilistic theory of phase transitions in statistical physics, especially in dimensions three and four. マリナ・ヴィヤゾフスカ(Maryna Viazovska, 1984年 - ) ウクライナ For the proof that the E_{8} lattice provides the densest packing of identical spheres in 8 dimensions, and further contributions to related extremal problems and interpolation problems in Fourier analysis. 球充填問題を8次元と24次元で解決したことや,フーリエ解析における極値および補間問題への更なる貢献が評価[22]。 つづく http://rio2016.5ch.net/test/read.cgi/math/1674527723/3
4: 132人目の素数さん [] 2023/01/24(火) 11:37:31.65 ID:7EkKRL+N つづき https://ja.wikipedia.org/wiki/%E8%B6%85%E5%BC%A6%E7%90%86%E8%AB%96 超弦理論 基本的な説明 超弦理論には5つのバリエーションがあり、それぞれタイプI、IIA、IIB、ヘテロSO(32)、ヘテロE8×E8と呼ばれる。この5つの超弦理論はいずれも理論の整合性のために10次元時空を必要とする。 https://en.wikipedia.org/wiki/Leech_lattice Leech lattice Applications The vertex algebra of the two-dimensional conformal field theory describing bosonic string theory, compactified on the 24-dimensional quotient torus R24/Λ24 and orbifolded by a two-element reflection group, provides an explicit construction of the Griess algebra that has the monster group as its automorphism group. This monster vertex algebra was also used to prove the monstrous moonshine conjectures. (引用終り) つづく http://rio2016.5ch.net/test/read.cgi/math/1674527723/4
5: 132人目の素数さん [] 2023/01/24(火) 11:40:09.01 ID:7EkKRL+N つづき なお、 おサル=サイコパス*のピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets**) (Yahoo!でのあだ名が、「一石」) <*)サイコパスの特徴> (参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日 (**)注;https://en.wikipedia.org/wiki/Hyperboloid Hyperboloid Hyperboloid of two sheets :https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/Hyperboloid2.png/150px-Hyperboloid2.png https://ja.wikipedia.org/wiki/%E5%8F%8C%E6%9B%B2%E9%9D%A2 双曲面 二葉双曲面 :https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/HyperboloidOfTwoSheets.svg/180px-HyperboloidOfTwoSheets.svg.png おサルさんの正体判明!(^^) スレ12 https://rio2016.5ch.net/test/read.cgi/math/1671460269/923 より ”「ガロア理論 昭和で分からず 令和でわかる #平成どうしたw」! 昭和の末期に、どこかの大学の数学科 多分、代数学の講義もあったんだ でも、さっぱりで、落ちこぼれ卒業して 平成の間だけでも30年、前後を加えて35年か” ”(修士の)ボクの専攻は情報科学ですね”とも 可哀想に、数学科のオチコボレで、鳥無き里のコウモリ***)そのもので、威張り散らし、誰彼無く噛みつくアホ 本来お断り対象だが、他のスレでの迷惑が減るように、このスレで放し飼いとするw(^^ 注***)鳥無き里のコウモリ:自分より優れた数学DRやプロ数学者が居ないところで、たかが数学科のオチコボレが、威張り散らす姿は、哀れなり~!(^^; なお 低脳幼稚園児のAAお絵かき 小学レベルとバカプロ固定 は、お断りです 小学生がいますので、18金(禁)よろしくね!(^^ テンプレは以上です http://rio2016.5ch.net/test/read.cgi/math/1674527723/5
6: 132人目の素数さん [sage] 2023/01/24(火) 11:45:48.51 ID:l9g7rC5D 糞スレ乙 http://rio2016.5ch.net/test/read.cgi/math/1674527723/6
7: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2023/01/24(火) 12:17:11.83 ID:7EkKRL+N アーベル方程式とアーベル拡大の話 下記 再帰の反復blog 高瀬正仁『ガウスの数論』 貼っておきますね (参考) https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%BC%E3%83%99%E3%83%AB%E6%96%B9%E7%A8%8B%E5%BC%8F アーベル方程式 https://en.wikipedia.org/wiki/Abel_equation Abel equation https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%BC%E3%83%99%E3%83%AB%E6%8B%A1%E5%A4%A7 アーベル拡大 https://lemniscus.はてなブログ.com/entry/20110626/1309061372 再帰の反復blog 2011-06-26 高瀬正仁『ガウスの数論』 タイトル通り、ガウスの数論を詳しく紹介している。説明自体は非常に明解で、ガウスの思索が相互法則の周りを常に巡っていることも分かる。にもかかわらず、ガウスはどうしてこんなことをやったんだろうという不可解な気分がずっと消えなかった。何か孤高というか隔絶しているというか。 ガウスに端を発するそれ以後の数学の流れをもう少し詳しく理解できたら不可解さも減るかもしれないと思ったので、第2章「円周等分方程式とアーベル方程式」とあとがきを参考にしてとりあえずまとめてみる https://cdn-ak.f.st-hatena.com/images/fotolife/l/lemniscus/20110626/20110626133436.png つづく http://rio2016.5ch.net/test/read.cgi/math/1674527723/7
8: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2023/01/24(火) 12:18:24.27 ID:7EkKRL+N >>7 つづき (1) 方程式論 ガウスの円周等分方程式論(とそこで述べられたレムニスケートの等分についての註)を起点とする流れ。 アーベルは楕円関数を研究しレムニスケート等分の理論を得て、一般化して、虚数乗法、さらにアーベル方程式の概念を得た(アーベル方程式は代数的に解ける方程式の一種で、円周等分方程式やレムニスケートの等分方程式もアーベル方程式。方程式が代数的に解けるための一般的な条件はその後ガロアによって得られた)。 (2) 代数的整数論 略 (3) 相互法則と楕円関数 略 (4) クロネッカー クロネッカーは係数の範囲を設定した上でアーベル方程式を構成するという問題を考える。 整数係数のアーベル方程式の根は円周等分方程式の根の有理式で書ける(=有理数体のアーベル拡大は円分体の部分体である)(クロネッカー・ヴェーバーの定理)。 これは、整数係数のアーベル方程式の根は指数関数の特殊値exp(2πi/n) の有理式で表すことができるということでもある。さらに、ガウス整数を係数とするアーベル方程式の場合は、レムニスケートの等分方程式が同様の役割を果たすと主張した。 これによって、円周等分方程式やレムニスケートの等分の理論で平方剰余の相互法則や四次剰余の相互法則が証明される理由も説明される(平方剰余の法則は有理数体のアーベル拡大に関わり、四次剰余の法則はガウス数体のアーベル拡大に関わるから)。 そして「クロネッカーの青春の夢」と呼ばれる次の予想をおこなった。 虚二次体を係数とするアーベル方程式の根は、虚数乗法を持つ楕円関数の変換方程式の根の有理式で書ける(→虚二次体のアーベル拡大は、1の巾根、楕円関数の等分値、特異母数の添加で得られる)。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1674527723/8
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 994 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.025s