[過去ログ] 純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
429(2): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/05(木)21:27 ID:LLYxdg6H(3/3) AAS
>>428
つづき
さてさて
1)上記時枝 箱入り無数目の箱に、√2の10進展開の数を入れるとする
√2=1.4142・・ 最初の箱に1、二番目が4、三番目が1、四番目が4、五番目が2・・とする
2)√2=1.4142・・による数列の存在は、数学ではコーシー列として実現できる。よって、箱に入れる数も決まる
3)なお、いまの場合、箱の数はただ0~9の一桁の整数でしかない。時枝では、箱には任意の実数が入るので遙かに複雑だ
省14
430: 2023/01/05(木)21:53 ID:ui+6CINH(3/3) AAS
>>428-429
全く支離滅裂な発言
1は統合失調症か
外部リンク:ja.wikipedia.org
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
連合弛緩:
思考が脈絡なく飛躍する。
省9
432: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2023/01/06(金)07:56 ID:9sWh0IFW(2/5) AAS
>>429 補足
構成主義的視点では、時枝の手法の99/100は、計算可能性の面から否定されるってことかな?w (下記ご参照)
外部リンク:ja.wikipedia.org
構成主義 (数学)
構成主義(こうせいしゅぎ、英: constructivism)とは、「ある数学的対象が存在することを証明するためには、それを実際に見つけたり構成したりしなければならない」という考えのことである。標準的な数学においてはそうではなく、具体的に見つけることなしに背理法によって存在を示す、すなわち存在しないことを仮定して矛盾を導くことがよくある。この背理法というものは構成的に見ると十分ではない。構成的な見地は、古典的な解釈をもって中途半端なままである、存在記号の意味を確かめることを含む。
多くの形の構成主義がある[1]。これらはブラウワーによって創始された直観主義のプログラム、ヒルベルトならびにベルナイスの有限主義(英語版)、Shamin(英語版)ならびにMarkov(英語版)の構成的で再帰的な数学、そして構成的解析学(英語版)であるBishop(英語版)のプログラムを含む。構成主義はCZF(英語版)やトポス論の研究のような構成的集合論(英語版)の研究もまた含む。
構成主義はしばしば直観主義と同一視される、しかしながら直観主義は構成主義者のプログラムのひとつでしかない。個人的な数学者の直観のなかに数学の基礎がおかれるところの直観主義数学は、それによってひとつの内在的で主観的な活動のなかへと数学をさせている[2]。他の形の構成主義は直観のこの見地において基礎をもたない、そして数学において客観的な見地をもって両立できる。
省16
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.050s