[過去ログ]
純粋・応用数学・数学隣接分野(含むガロア理論)12 (1002レス)
純粋・応用数学・数学隣接分野(含むガロア理論)12 http://rio2016.5ch.net/test/read.cgi/math/1671460269/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
227: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2022/12/31(土) 23:32:16.88 ID:rNlYJ3SK >>220 >ムーンシャイン出てきたから有限単純群の分類はとっても意味あったね そうだね ムーンシャインは、物理の超弦理論とも関係していて不思議だね ”マチュームーンシャイン 2010年、江口徹、大栗博司、立川祐二” 立川祐二氏、山下真由子氏との共同研究があるとか(下記) 数理科学誌の投稿にも、同様のことが書いてあった (参考) https://ja.wikipedia.org/wiki/%E3%83%A2%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%B9%E3%83%BB%E3%83%A0%E3%83%BC%E3%83%B3%E3%82%B7%E3%83%A3%E3%82%A4%E3%83%B3 モンストラス・ムーンシャイン モンストラス・ムーンシャインもしくはムーンシャイン理論とは、モンスター群とモジュラー函数、特に j-不変量との間の予期せぬ関係を指し示す用語、およびそれを記述する理論である。1979年にジョン・コンウェイ(John Conway)とシモン・ノートン(英語版)(Simon Norton)により命名された。今ではその背景として、モンスター群を対称性として持つある共形場理論があることが知られている。コンウェイとノートンによって考案されたムーンシャイン予想は1992年、リチャード・ボーチャーズ(Richard Borcherds)により、弦理論や頂点作用素代数(英語版)(vertex operator algebra)、一般カッツ・ムーディ代数を用いて証明された。 一般化されたムーンシャイン コンウェイとノートンは、1979年の論文で「ムーンシャインは恐らくモンスターに限るものではなく、同様の現象が他の群でも起こりうるのではないか」と示唆している。1980年に、ラリッサ・クイーン(Larissa Queen)たちは、実際には、多くの散在群(英語版)の次元の単純な組み合わせから多くの Hauptmodul (McKay-Thompson series Tg) を構成することができることを発見した。 1987年、ノートンはクイーンの結果と彼の計算を組み合わせ、一般化されたムーンシャイン予想を定式化した。この予想は、モンスターの各々の元 g、次数付きベクトル空間 V(g)、各々の元と元の交換子 (g, h)、に対して、正則函数 f(g, h, τ) を関係づける規則があり、次の条件を満たすという予想である。 つづく http://rio2016.5ch.net/test/read.cgi/math/1671460269/227
228: 現代数学の系譜 雑談 ◆yH25M02vWFhP [] 2022/12/31(土) 23:33:41.35 ID:rNlYJ3SK >>227 つづき この予想は、コンウェイ・ノートンの予想の一般化である。その理由は、ボーチャーズの定理が、g が恒等元として設定されているときの場合に関係しているからである。今日まで、この予想は未解決である。 コンウェイ・ノートンの予想のように、一般化されたムーンシャイン予想もまた、物理的な解釈をもっていて、1988年にディクソン・ギンスパーク・ハーヴィ(Dixon-Ginsparg-Harvey)により提案されたDixon, Ginsparg & Harvey (1989)。かれらはベクトル空間 V(g) をモンスター対称性を持った共形場理論のツイストされたセクターとして、また、函数 f(g,h,τ) の乗法的数列の種数 1 を分配函数の種数として解釈した。 量子重力との予想される関係 2007年、エドワード・ウィッテン(Edward Witten)は、AdS/CFT対応が (2+1)-次元の反ド・ジッター空間の純粋量子重力と、臨界で正則CFTの間の双対性を主張していると示唆した。(2+1)-次元の純粋重力は自由度を持たないが、しかし宇宙定数が負のときにBTZブラックホール解が存在するために非自明なことが起きる。ハーン(G. Hohn)により導入された臨界CFTは、低エネルギーではヴィラソロプライマリー場を持たないということにより特徴づけられ、ムーシャイン加群が一つの例となっている。 ウィッテンの提案(Witten (2007))に従うと、AdS空間内の最大の負の宇宙定数を持つ重力は、中心電荷 {\displaystyle c=24}c=24 でCFTの分配函数がちょうど {\displaystyle j-744}j-744 となる正則CFTのAdS/CFT双対である。この正則CFTは、ムーンシャイン加群の次数付き指標(character)である。フレンケル・レポウスキー・ミュールマンの予想であるムーンシャイン加群は、中心電荷が 24 で指標が {\displaystyle j-744}j-744 である唯一の正則頂点作用素代数(VOA)であるという予想を前提として、ウィッテンは最大の負の宇宙定数を持つ純粋重力は、モンスターCFTの双対であると結論づけた。 つづく http://rio2016.5ch.net/test/read.cgi/math/1671460269/228
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.036s