[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 65 http://rio2016.5ch.net/test/read.cgi/math/1644632425/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
558: 132人目の素数さん [] 2022/04/24(日) 10:13:42.00 ID:/7dcPctj >>527 追加 >宇宙際Teichmuller理論 >[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-12-23) >https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf Mutually Alien Copies に関連しそうなところを、下記に引用すると 1)N ・ h “=〜” h N be a fixed natural number > 1 2)qN “=〜” q 3)“alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. とか、そのまま読むと、望月ワールド全開で、NHKスペシャル見ているから「同じものを別と見て、かつ同一視する」でしたか、ああこのことかと思いました 普通に読むと、読めないでしょうね ” Gaussian integral に繋げないんだろう”と好意的に読むと、気持ちは分かりますがね(これ数学として成り立つ?w) ここ、説明の一つの山でしょね (引用開始) P3 Introduction Let N be a fixed natural number > 1. Then the issue of bounding a given nonnegative real number h ∈ R?0 may be understood as the issue of showing that N ・ h is roughly equal to h, i.e., N ・ h “=〜” h [cf. §2.3, §2.4]. When h is the height of an elliptic curve over a number field, this issue may be understood as the issue of showing that the height of the [in fact, in most cases, fictional!] “elliptic curve” whose q-parameters are the N-th powers “qN ” of the q-parameters “q” of the given elliptic curve is roughly equal to the height of the given elliptic curve, i.e., that, at least from the point of view of [global] heights, qN “=〜” q [cf. §2.3, §2.4]. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/558
559: 132人目の素数さん [] 2022/04/24(日) 10:14:18.65 ID:/7dcPctj >>558 つづき In order to verify the approximate relation qN “=〜” q, one begins by introducing two distinct - i.e., two “mutually alien” - copies of the conventional scheme theory surrounding the given initial Θ-data. Here, the intended sense of the descriptive “alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. These two mutually alien copies of conventional scheme theory are glued together - by considering relatively weak underlying structures of the respective conventional scheme theories such as multiplicative monoids and profinite groups - in such a way that the “qN ” in one copy of scheme theory is identified with the “q” in the other copy of scheme theory. This gluing is referred to as the Θ-link. Thus, the “qN ” on the left-hand side of the Θ-link is glued to the “q” on the right-hand side of the Θ-link, i.e., qNLHS “=” qRHS [cf. §3.3, (vii), for more details]. Here, “N” is in fact taken not to be a fixed natural number, but rather a sort of symmetrized average over the values j2, where j = 1,...,l*, and we write l* def = (l ? 1)/2. Thus, the left-hand side of the above display {qj2LHS}j bears a striking formal resemblance to the Gaussian distribution. One then verifies the desired approximate relation qN “=〜” q by computing {qj2LHS}j - not in terms of qLHS [which is immediate from the definitions!], but rather - in terms of [the scheme theory surrounding] qRHS [which is a highly nontrivial matter!]. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1644632425/559
560: 132人目の素数さん [] 2022/04/24(日) 10:14:58.09 ID:/7dcPctj >>558 追加の追加 因みに、” the familiar Galois module “Z^(1)””とか合ったので下記を引用しておきます (引用開始) P17 § 2.6. Positive characteristic model for mono-anabelian transport In this example, Galois groups, or ´etale fundamental groups, in some sense play the role that is played by tangent bundles in the classical theory - a situation that is reminiscent of the approach of the [scheme-theoretic] Hodge-Arakelov theory of [HASurI], [HASurII], which is briefly reviewed in §2.14 below. One notion of central importance in this example - and indeed throughout inter-universal Teichm¨uller theory! - is the notion of a cyclotome, a term which is used to refer to an isomorphic copy of some quotient [by a closed submodule] of the familiar Galois module “Z^(1)”, i.e., the “Tate twist” of the trivial Galois module “Z^”, or, alternatively, the rank one free Z^-module equipped with the action determined by the cyclotomic character. Also, if p is a prime number, then we shall write Z^=p for the quotient Z^/Zp. (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1644632425/560
568: 132人目の素数さん [] 2022/04/24(日) 14:49:27.00 ID:/7dcPctj >>558 追加 > 3)“alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. >とか、そのまま読むと、望月ワールド全開で、NHKスペシャル見ているから「同じものを別と見て、かつ同一視する」でしたか、ああこのことかと思いました >普通に読むと、読めないでしょうね 下記 フェセンコサーベイ (星の遠アーベル幾何学の進展 数学 vol74-No1 に紹介されている 文献の[6]) を読んでいる ”such gluing isomorphisms by applying various tautological Galois-equivariance properties of such gluing isomorphisms ” (google訳 そのような接着同型の様々なトートロジー的ガロア同変特性を適用することによるそのような接着同型 ) とか 出てくるんだよね(下記) 知らない人には、「え〜」てなものでしょうね まして、ショルツェ氏のように、直接IUTの論文を読むと、あまりの奇想天外の発想についていけず 自分なりの独自解釈をしてしまいそうですねw (参考) https://ivanfesenko.org/?page_id=126 Research ? Ivan Fesenko https://ivanfesenko.org/wp-content/uploads/2021/10/notesoniut.pdf [L1] Arithmetic deformation theory via arithmetic fundamental groups and nonarchimedean theta functions, notes on the work of Shinichi Mochizuki, Europ. J. Math. (2015) 1:405?440 P15 Monoid-theoretic structures are of essential importance in IUT, since they allow one to construct various gluing isomorphisms. The use of Galois and arithmetic fundamental groups gives rise to canonical splittings objects arising from such gluing isomorphisms by applying various tautological Galois-equivariance properties of such gluing isomorphisms. The computation of the theta-link can be viewed as a sort of passage from monoid-theoretic data to such canonical splittings involving arithmetic fundamental groups, by applying generalised Kummer theory, together with various multiradial algorithms which make essential use of mono-anabelian geometry. http://rio2016.5ch.net/test/read.cgi/math/1644632425/568
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
アボンOFF
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.031s