[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
前次1-
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
250
(1): 2022/04/12(火)09:53 ID:QwXooT/Y(1/4) AAS
今年9月とは、2012年9月かな
異なるものを同じと見て
その一方で、同じと見たものから、異なる世界の「メガネ」を通して、別のものと見る(復元ですね)
IUTワールド

外部リンク[html]:www.jinzai-soshiki.com
- 戦略的人事にITを活かす - 人材・組織システム研究室
第113回 異なる世界の「メガネ」を通して見えてくるもの
省19
259
(3): 2022/04/12(火)16:34 ID:QwXooT/Y(2/4) AAS
>>250
>異なるものを同じと見て
>その一方で、同じと見たものから、異なる世界の「メガネ」を通して、別のものと見る(復元ですね)

下記の望月 H24年7月 公開講座 ”数体と位相曲面に共通する「二次元の群論的幾何」”
曰く”「加減乗除」が可能な数学的対象としての構造の理論から見ても直接的に関連付ける
ことは難しい。しかし数体の拡大体の対称性を記述する「絶対ガロア群」と、コンパクト
な位相曲面の有限次の被覆の対称性を統制する「副有限基本群」を通して両者を改めて眺
省27
260
(3): 2022/04/12(火)16:35 ID:QwXooT/Y(3/4) AAS
>>259
つづき

P20
位相曲面の場合、 §2.3 で解説した普遍被覆のような(一般には無限次の)被覆等、様々
な被覆が存在するわけだが、
多項式で定義される「代数的な世界」に留まろうとすると、
有限次の被覆しか扱うことができない。
省24
261
(1): 2022/04/12(火)16:40 ID:QwXooT/Y(4/4) AAS
>>260 つづき
§4.2. 副有限基本群への絶対ガロア群の忠実な外作用
前節(§4.1)の外部表現 ρX については様々な角度から多種多様な研究が行なわれてい
るが、ρX について知られている最も基本的な事実の一つは次の結果([HM], Theorem C を参照)である
定理:数体 F 上で定義される双曲的代数曲線 X に付随する自然な外部表現 ρX : GF → Out(πb1(X)) は単射になる

同種の「単射性」に関する定理は、「穴が開いている」=「コンパクトでない」双曲的
代数曲線の場合には、既に [Mtm] で証明されていて、[Mtm] も [HM] も、一番最初に Belyi
省16
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.032s