[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 65 http://rio2016.5ch.net/test/read.cgi/math/1644632425/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
497: 132人目の素数さん [] 2022/04/23(土) 12:58:42.09 ID:MU2asfqc >>496 つづき In this context, we remark that it is also this state of affairs that gave rise to the term “inter-universal”: That is to say, the notion of a “universe”, as well as the use of multiple universes within the discussion of a single set-up in arithmetic geometry, already occurs in the mathematics of the 1960’s, i.e., in the mathematics of Galois categories and ´etale topoi associated to schemes. On the other hand, in this mathematics of the Grothendieck school, typically one only considers relationships between universes ? i.e., between labelling apparatuses for sets ? that are induced by morphisms of schemes, i.e., in essence by ring homomorphisms. The most typical example of this sort of situation is the functor between Galois categories of ´etale coverings induced by a morphism of connected schemes. By contrast, the links that occur in inter-universal Teichm¨uller theory are constructed by partially dismantling the ring structures of the rings in their domains and codomains [cf. the discussion of §2.7, (vii)], hence necessarily result in much more complicated relationships between the universes ? i.e., between the labelling apparatuses for sets ? that are adopted in the Galois categories that occur in the domains and codomains of these links, i.e., relationships that do not respect the various labelling apparatuses for sets that arise from correspondences between the Galois groups that appear and the respective ring/scheme theories that occur in the domains and codomains of the links. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/497
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 505 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.010s