[過去ログ]
Inter-universal geometry と ABC予想 (応援スレ) 65 (1002レス)
Inter-universal geometry と ABC予想 (応援スレ) 65 http://rio2016.5ch.net/test/read.cgi/math/1644632425/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
453: 132人目の素数さん [sage] 2022/04/21(木) 21:37:45.12 ID:72/7EJMd >>450 Cor3.12からABC予想やその強化版が証明できることは誰も疑っていない 肝心なのはCor3.12が定理か否か 残念ながら望月によるCor3.12の証明は認められていない http://rio2016.5ch.net/test/read.cgi/math/1644632425/453
454: 132人目の素数さん [sage] 2022/04/21(木) 21:52:44.21 ID:OijqNbVA >>453 そういや番組ではCor3.12については触れてなかったね http://rio2016.5ch.net/test/read.cgi/math/1644632425/454
455: 132人目の素数さん [] 2022/04/21(木) 22:01:54.47 ID:fQpPqE93 経歴が華やかなだけに無条件信者が出てきちゃうのが厄介よね 実際東大博士で楕円曲線をやってきた人だってわからないと逃げ出すくらいの問題だから http://rio2016.5ch.net/test/read.cgi/math/1644632425/455
456: 132人目の素数さん [] 2022/04/21(木) 22:23:26.22 ID:732X/n07 >>453 ×認められていない ○認めていない人がいる でしょ。 認めいる人といない人がいる でもいいが。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/456
457: 132人目の素数さん [sage] 2022/04/21(木) 22:29:32.07 ID:OijqNbVA 未だにCor3.12が何なのかすら知らない 誰も教えてはくれんね http://rio2016.5ch.net/test/read.cgi/math/1644632425/457
458: 132人目の素数さん [] 2022/04/21(木) 22:37:53.66 ID:732X/n07 >>457 論文は公開されてるから、それ読めばいいのだ。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/458
459: 132人目の素数さん [] 2022/04/22(金) 00:31:24.67 ID:7mnIUnIC >>444 >信用できる根拠がない、ということに尽きますが何か? それだと、根拠の客観性に欠けますね 「”望月新一を信用しないほうがいい”と思う」と、同義でしかない >ショルツ氏は森重文氏に頼まれてコメントしたと聞いてますが何か? 正確には、当時IMUの長だった森重文氏が、ショルツェ氏(& Stix氏)に頼んで京都で5日間の討議の機会を作った ってことです。ドイツから京都への足代と5日間の宿代は、多分RIMSの予算でしょう 森重文氏の意図は、ショルツェ
氏がフィールズ賞を受賞することを予測していて、討議してもらった。当然、その狙いは、IUTに対して理解してもらうことだったはず。結果は逆だったが >逆に望月新一氏本人もしくは弟子といわれる星氏が >IUTの正当性を示せる本を書けますか? あなたは、星氏の数学的能力や才能や、彼が将来何ができるかを正確に見通せるだけの力があるの? そうは思えないし 星氏が一人でやることもない。何人もが協力してなお、不可能という理屈がないと思う >何ら意味のある解説すらできていません >今後何年かかってもそのようなものが出るとは >
;私には到底思えませんし、期待するだけ空しいでしょう それって、”あなたが”理解できる解説がないってことですよね NHKの番組でも、何人かIUTを理解して発言している数学者が登場しています(英フェセンコ先生や米Dupuy先生) あるいは、玉川先生とか。あなたは、玉川先生より、自分が上だと言いたい? >あなたがただ日本を自慢したいだけの素人だとしても >こんな人を自慢するのは自爆行為だからやめたほうがいいですよ >嘲笑されるだけですから そもそも、IUTの4編の論文は、RIMSが査読し、すでに公表された そこに、玉川先生も柏原
先生も、望月拓郎先生(3億円受賞の人)も、実名を出して「ちゃんと査読しました」ってあるよ 玉川先生も柏原先生も、望月拓郎先生(3億円受賞の人)たち、嘲笑されているの? 世界的に有名な上記の先生たちより、あなたの数学力は上なの? まさかね ABC]明示公式の5人共著論文が、東京工大で査読完了と発表された 東京工大が嘲笑されている? あなた個人の妄想じゃないですか?客観性が欠落していると思いますけど http://rio2016.5ch.net/test/read.cgi/math/1644632425/459
460: 132人目の素数さん [] 2022/04/22(金) 03:28:51.54 ID:m1TxrX5r 悪魔の証明求めてもなぁ。。 取り巻きや信者はこんな詭弁ばっか。 あと、金が絡むと人間変わるよ。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/460
461: 132人目の素数さん [sage] 2022/04/22(金) 06:18:35.42 ID:xe4TIdjC なんで律儀に(3億円受賞)って繰り返すの? 権威主義者? http://rio2016.5ch.net/test/read.cgi/math/1644632425/461
462: 132人目の素数さん [] 2022/04/22(金) 07:27:32.02 ID:7mnIUnIC >>459 補足 >あなたがただ日本を自慢したいだけの素人だとしても >こんな人を自慢するのは自爆行為だからやめたほうがいいですよ >嘲笑されるだけですから このセリフは、どこかで聞いたと思ったら 例のIDを消していた >>6-7 のサイコパスさんじゃないですかw ”数学における日本とかいう野蛮な島のジコチュウ●チガイの系譜 オカ、シムラ、モチヅキ”と言っていたw なんだ もしそうなら、>>444の ID:72/7EJMd氏は、とても数学の玄人とは言えな
い ”数学を主たる職業として、生計が成りったっている”は、せいぜい中学・高校の数学の家庭教師程度でしょうね 実際、>>444にはIUTを否定する数学的陳述は皆無ですしw なので、>>448 ID:13PcQLwo氏に賛成です 東大生は、自身の東大を「最も有名な国立大学」なんて、言わないだろうね、きっとw http://rio2016.5ch.net/test/read.cgi/math/1644632425/462
463: 132人目の素数さん [] 2022/04/22(金) 07:44:44.65 ID:7mnIUnIC >>461 >なんで律儀に(3億円受賞)って繰り返すの? 単純に”すごい”ってだけですが おっと、下記で、数学ブレイクスルー賞に”New Horizons in Mathematics Prizeは若手の研究者に授与される賞。賞金総額10万ドル” があって、初代の”2016年 ペーター・ショルツェ(辞退)”ってある。ポアンカレでフィールズ賞を辞退した人を思い出すな しかし、ショルツェ氏は、フィールズ賞は辞退しなかったんだ。うーん、なんでかな?w 因みに 拓郎先生は、”including the cas
e of irregular singularities”が評価されたみたいだね (参考) https://ja.wikipedia.org/wiki/%E3%83%96%E3%83%AC%E3%82%A4%E3%82%AF%E3%82%B9%E3%83%AB%E3%83%BC%E8%B3%9E ブレイクスルー賞は、下記三部門からなる自然科学における国際的な学術賞。 基礎物理学ブレイクスルー賞- 2012年創設 生命科学ブレイクスルー賞- 2013年創設 数学ブレイクスルー賞- 2014年創設 各賞とも総額300万ドル授与される[1] https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E3%83%96%E3%83%AC%E3%82%A4%E3%82%AF%E3%82%B9%E3%83%AB%E3%83%BC%E8%B3%9E 数学ブレイ
クスルー賞 ノーベル賞に数学部門がないこともあって、数学界では長らくフィールズ賞が最高権威の賞とされてきたが、これには40歳以下という年齢制限があり、賞金規模もノーベル賞には遠く及ばないものである。しかし近年ではクラフォード賞、ミレニアム賞、アーベル賞そして本賞と、優れた数学研究に高額賞金を与える学術賞が次々と創設されている。 受賞者 2022年 - 望月拓郎[2] https://breakthroughprize.org/Laureates/3/L3906 Takuro Mochizuki Kyoto University 2022 Breakthrough Prize in Mathematics For monumental work leading to a brea
kthrough in our understanding of the theory of bundles with flat connections over algebraic varieties, including the case of irregular singularities. New Horizons in Mathematics Prize New Horizons in Mathematics Prizeは若手の研究者に授与される賞。賞金総額10万ドル。 2016年 ペーター・ショルツェ(辞退) http://rio2016.5ch.net/test/read.cgi/math/1644632425/463
464: 132人目の素数さん [sage] 2022/04/22(金) 08:25:49.04 ID:ezxBLnGj フィールズ賞を辞退しないのとに疑問持つ時点で意味不明 http://rio2016.5ch.net/test/read.cgi/math/1644632425/464
465: 132人目の素数さん [sage] 2022/04/22(金) 13:52:50.87 ID:ULiNqU+u モッチー3億円ゲットなんだ。 苦節10年、よく頑張った。 おめでとう。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/465
466: 132人目の素数さん [sage] 2022/04/22(金) 14:13:31.88 ID:LedtzuTW こういう誤解あるよな ほんと皮肉なもんだ http://rio2016.5ch.net/test/read.cgi/math/1644632425/466
467: 132人目の素数さん [] 2022/04/22(金) 15:17:42.23 ID:4NEHi4lf 紛らわしいよなirregular singularityとかいう表現が http://rio2016.5ch.net/test/read.cgi/math/1644632425/467
468: 132人目の素数さん [sage] 2022/04/22(金) 16:30:18.19 ID:i4ZYhQju エッ 古典解析の常識語だが http://rio2016.5ch.net/test/read.cgi/math/1644632425/468
469: 132人目の素数さん [sage] 2022/04/22(金) 16:38:42.61 ID:cDM6IWTx >>459 >IUTの4編の論文は、RIMSが査読し、すでに公表された >そこに、玉川先生も柏原先生も、望月拓郎先生も、 >実名を出して「ちゃんと査読しました」ってあるよ 玉川・柏原・望月拓郎の各氏は編集委員会のメンバーというだけ 彼らが査読したわけでもないにさも査読したように思わせる 上記の文章の書きぶりは如何なものでしょうか? http://rio2016.5ch.net/test/read.cgi/math/1644632425/469
470: 132人目の素数さん [sage] 2022/04/22(金) 16:40:14.88 ID:cDM6IWTx >>461 >なんで律儀に(3億円受賞)って繰り返すの? >>463 >単純に”すごい”ってだけですが 3億円欲しいんじゃない? でも、それなら数学で稼ぐのは難しいから 他の方法をあたったほうがいいんじゃないかな? http://rio2016.5ch.net/test/read.cgi/math/1644632425/470
471: 132人目の素数さん [sage] 2022/04/22(金) 16:41:30.70 ID:+27JhErP 少なくとも柏原先生と拓郎先生は完全にジャンル外の人だな http://rio2016.5ch.net/test/read.cgi/math/1644632425/471
472: 132人目の素数さん [sage] 2022/04/22(金) 16:56:12.62 ID:cDM6IWTx >>471 素人さんは大数学者ならいかなる分野の論文も即座に理解できる筈と 途方もない幻想を抱いてるのかもしれませんね もちろんそんなことはありません http://rio2016.5ch.net/test/read.cgi/math/1644632425/472
473: 132人目の素数さん [] 2022/04/22(金) 18:12:37.21 ID:0AQbOsRq >>470 > 3億円欲しいんじゃない? 欲しいです(貰えるものならばw) 誰しもでは? 3億円辞退は勇気いりますよ 100万ドル(1億円以上)を、断った数学者がいました。フィールズ賞も断ったとかw https://ja.wikipedia.org/wiki/%E3%82%B0%E3%83%AA%E3%82%B4%E3%83%AA%E3%83%BC%E3%83%BB%E3%83%9A%E3%83%AC%E3%83%AB%E3%83%9E%E3%83%B3 グリゴリー・ペレルマン 「自分の証明が正しければ賞は必要ない」として受賞を辞退した。フィールズ賞の辞退は、彼が初めてであ
る。 2010年3月18日に、クレイ数学研究所は、ペレルマンがポアンカレ予想を解決したと認定して、ミレニアム賞(副賞として100万ドル)授賞を発表した。彼は、2010年6月8日の授賞式に姿を見せなかったが、クレイ数学研究所の所長は「選択を尊重する」と声明を発表し、賞金と賞品は保管されるという[4]。同年7月1日にロシアのインテルファクス通信がペレルマンの話として伝えたところによると、受賞を断った理由は複数あるが、ハミルトンのリッチ・フロー発見に対する評価が十分でないことなど、数学界の不公平さに異議があることをその主たるものとして
挙げたという[5]。これを受けて、クレイ数学研究所は、同年秋までに賞金の使途を数学界の利益になる形で決定すると述べた。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/473
474: 132人目の素数さん [] 2022/04/22(金) 18:17:20.66 ID:0AQbOsRq >>469 >玉川・柏原・望月拓郎の各氏は編集委員会のメンバーというだけ >彼らが査読したわけでもないにさも査読したように思わせる >上記の文章の書きぶりは如何なものでしょうか?] 社会、特に日本の社会における、責任のあり方が分かってないのでは? 会社の社長が「あれは社員がやったことで、私は無責任です」とかw 政治家が「秘書がやったことです。私は無責任です」とかは、政治では”よくある”としてもww これだけお騒がせのIUT論文が、「実は大穴
、大ギャップありでした」とかなれば ただでは、済まない さすがに大人しい日本の数学会も 「編集委員は、全員RIMS辞表ものだ。日本数学会も除名(普通は自主的に脱会する)」でしょう それだけの覚悟がなくば、名前は出せない(名前を出すことが異例中の異例と思います) 要するに、査読者は匿名さんで名前表には出ないし、誰に査読させてるのかは公表しない。そのかわり、査読の是非判断を、管理監督者として、編集委員会が責任を持つのです 全責任を、編集委員が負うってことです (査読者にだれを選ぶか。何人に査読してもらうべきかから始まっ
てね) IUT論文で責任者として名前を出した以上、万一の場合の辞表は懐に入れているってことでしょう http://rio2016.5ch.net/test/read.cgi/math/1644632425/474
475: 132人目の素数さん [] 2022/04/22(金) 18:26:17.94 ID:0AQbOsRq >>464 >フィールズ賞を辞退しないのとに疑問持つ いや、>>463 ”賞金総額10万ドル。2016年 ペーター・ショルツェ(辞退)”の方です まあ、ショルツェ氏は”New Horizons in Mathematics Prizeは若手の研究者に授与される賞”とあるから軽いと思ったか あるいは新しい賞なので、気乗りしなかったのか? 私なら、貰えるものはもらっておきますけどね ショルツェ氏は、大物ですね http://rio2016.5ch.net/test/read.cgi/math/1644632425/475
476: 132人目の素数さん [sage] 2022/04/22(金) 18:43:00.23 ID:cDM6IWTx >>473 あなた 年収はいくら? http://rio2016.5ch.net/test/read.cgi/math/1644632425/476
477: 132人目の素数さん [sage] 2022/04/22(金) 18:44:40.89 ID:cDM6IWTx >>474 で、専門外の柏原と望月拓郎が査読してないことは理解した?素人さん http://rio2016.5ch.net/test/read.cgi/math/1644632425/477
478: 132人目の素数さん [sage] 2022/04/22(金) 18:52:37.37 ID:cDM6IWTx >>474 >これだけお騒がせのIUT論文が、 >「実は大穴、大ギャップありでした」 >とかなれば、ただでは、済まない 大穴、大ギャップがあることが問題なのではない そもそも、誰も理解できない論文が 査読でアクセプトされることが問題 素人さんはやっぱり学界のことが何もわかってませんね http://rio2016.5ch.net/test/read.cgi/math/1644632425/478
479: 132人目の素数さん [] 2022/04/22(金) 19:18:07.87 ID:yzYjMOWJ >>478 査読してアクセプトしてるってことは、理解でき、かつ、正しいと認めたってことだよ。 あんたは理解できないのかもしれないが。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/479
480: 132人目の素数さん [] 2022/04/22(金) 19:23:52.00 ID:yzYjMOWJ >>478 「誰も」「〜ない」っていうのは論文をアセプトした査読者には当てはまらんってことがわからん時点で、 あんた、アセプトの意味わかってないよ。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/480
481: 132人目の素数さん [sage] 2022/04/22(金) 21:36:08.92 ID:4bomcQS8 ペレルマンを引き合いに出すまでもなくショルツは天才 ペレルマンはサーストンの研究に依存する割合が大きいのでショルツとは比較にならない http://rio2016.5ch.net/test/read.cgi/math/1644632425/481
482: 132人目の素数さん [] 2022/04/22(金) 22:02:42.66 ID:4NEHi4lf >>481 いくらなんでも的外れすぎる http://rio2016.5ch.net/test/read.cgi/math/1644632425/482
483: 132人目の素数さん [] 2022/04/22(金) 22:33:09.60 ID:kveREwaf https://twitter.com/FumiharuKato/status/1514984048275619850 >@FumiharuKato >IUT理論における「宇宙」という用語が指し示すものが >望月さん独特のものであるのは本当です。その宇宙は >集合論の宇宙とも、グロンタンディーク宇宙とも >異なっていますので。 は何でそれに対するRobertsの質問 >@HigherGeometer >Replying to @FumiharuKato >Is there a formal definition of what Mochizuki means by the term? に答えないの? Collasが頓珍漢な
返答してるのに見て見ないふり? 結局、「宇宙」という用語が何を意味しているのかさえ 誰も理解してないんじゃないの? https://twitter.com/5chan_nel (5ch newer account) http://rio2016.5ch.net/test/read.cgi/math/1644632425/483
484: 132人目の素数さん [sage] 2022/04/23(土) 05:58:59.89 ID:K+cYDQ/q >>482 研究分野が違うからね とはいえ、ペレルマンの評価に、フィールズ賞やミレニアム賞を辞退したことは入らないよね http://rio2016.5ch.net/test/read.cgi/math/1644632425/484
485: 132人目の素数さん [sage] 2022/04/23(土) 06:54:35.06 ID:XyRMaIoL >>479-480 「査読者」が誰かは知らないが ショルツに説明できない時点で分かってないと露見 つまり査読自体がウソ http://rio2016.5ch.net/test/read.cgi/math/1644632425/485
486: 132人目の素数さん [sage] 2022/04/23(土) 06:58:12.17 >>483 文元氏は分かってないよ みんなうすうす気づいてると思うけど 彼、もうだいぶ前から 数学できない頭になってるから 大学やめた理由も実はそれ http://rio2016.5ch.net/test/read.cgi/math/1644632425/486
487: 132人目の素数さん [] 2022/04/23(土) 07:37:13.32 ID:ra2AJYhF >>486 >文元氏は分かってないよ 文元氏だけでなく誰も分かってないでしょ。だって >Is there a formal definition of what >Mochizuki means by the term? に対する答えは「ない」なんだから。 「宇宙」がどういう意味で使われているかは論文発表早々から 問われてきたけど、はっきりした答えが返ってきたことはない。 例えば山下氏の『"宇宙際"についてのFAQ』には ああとも取れるし、こうとも取れるみたいに書いてある。 こうした無定義の述語が頻
出するのがIUT。 "functorial algorithm"のformal definitionも見たことない。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/487
488: 132人目の素数さん [] 2022/04/23(土) 08:52:09.16 ID:NcoWVPo0 Kaminaka, Tsudoi; Kato, Fumiharu Extremal quasimodular forms of lower depth with integral Fourier coefficients. Kyushu J. Math. 75 (2021), no. 2, 351–364. (Reviewer: Jaban Meher) 11F30 http://rio2016.5ch.net/test/read.cgi/math/1644632425/488
489: 132人目の素数さん [sage] 2022/04/23(土) 09:10:33.40 >>487 >"functorial algorithm"のformal definitionも見たことない。 ああ、そりゃ駄目だ アルゴリズムというからには手続きが 実行可能な形で明確にしめされなくてはならない 何をどうやればいいか全く示されないなら 嘘書いたってこと http://rio2016.5ch.net/test/read.cgi/math/1644632425/489
490: 132人目の素数さん [] 2022/04/23(土) 11:41:47.30 ID:MU2asfqc >>428 補足 >宇宙際Teichmuller理論 >[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-12-23) >https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf この P3 (q-paramete) Let N be a fixed natural number > 1. Then the issue of bounding a given nonnegative real number h ∈ R?0
may be understood as the issue of showing that N ・ h is roughly equal to h, i.e., N ・ h “=〜” h [cf. §2.3, §2.4]. When h is the height of an elliptic curve over a number field, this issue may be understood as the issue of showing that the height of the [in fact, in most cases, fictional!] “elliptic curve” whose q-parameters are the N-th powers “qN ” of the q-parameters “q” of the given elliptic curve is roughly equal to the height of the given elliptic curve, i.e., that, at least from the
point of view of [global] heights, qN “=〜” q [cf. §2.3, §2.4]. In order to verify the approximate relation qN “=〜” q, one begins by introducing two distinct - i.e., two “mutually alien” - copies of the conventional scheme theory surrounding the given initial Θ-data. Here, the intended sense of the descriptive “alien” is that of its original Latin root, i.e., a sense of abstract, tautological “otherness”. ”q-parameter”が分からないので 調べていた。下記でも出てくるね つづく htt
p://rio2016.5ch.net/test/read.cgi/math/1644632425/490
491: 132人目の素数さん [] 2022/04/23(土) 11:42:51.22 ID:MU2asfqc >>490 つづき https://www.kurims.kyoto-u.ac.jp/~motizuki/Uchuusai%20Taihimyuuraa%20riron%20he%20no%20izanai%20(2015-02).pdf 宇宙際タイヒミューラー理論への誘(いざな)い《レクチャーノート版》 望月新一 2015年 02月 P2 以下では、E = 楕円曲線/数体 F, 素数 1>=5を固定する。 P3 Eを「大域的乗法的部分空間」で 割る ことによって得られる同種写像を E → E* と書くと、各 bad な有限素点においてそれぞれの q-parameter は次のような関係式を満たす: q^lE
=qE* https://webcache.googleusercontent.com/search?q=cache:ZOqM2WAfnxwJ:https://twitter.com/unaoya/status/1501162983204212737+&cd=5&hl=ja&ct=clnk&gl=jp 梅崎直也 Mar 6 来週日曜日は現代数学レクチャーシリーズ第8回宇宙際タイヒミューラー理論の予習回ということで、楕円曲線についての入門的なお話をします。こちらからお申し込みください。 https://sugakubunka.com/gendaisugaku-8/ 宇宙際タイヒミューラー理論ではqパラメータというのが重要な役割を果たしている(と思う)のですが、このqというのが楕円曲線の話とど
う関わっているのかをお話しできればと思っています。 Mar 8, 2022 梅崎直也氏をヒントに調べると 多分下記のq = exp(2πiz) (Takeshi Saito) (モジュラー形式 ノーム(nome)の平方、q-展開からみ モジュラリティ定理(q=e^2πiτ) が該当しそう。(梅崎直也先生の講義と答えは、合っているかな?)ちゃんと、文書中に定義を書いてほしいね、望月先生 (この分野の人には常識なのだろうが) (参考) https://www.ms.u-tokyo.ac.jp/~t-saito/ce/ Takeshi Saito's Home Page https://www.ms.u-tokyo.ac.jp/~t-saito/ce/0121.pdf Fermat’s Enigma 1 楕
円曲線 2 保型形式 H = z ∈ C|Im z > 0 を上半平面という. 保型形式:H 上定義された正則関数 f(z) のうち,特別な性質をみたすもの. 性質1.f(z + 1) = f(z) q = exp(2πiz) とおくと,f(z) = Σ∞ n=?∞ an・q^n と表わせる.z = x + iy のとき, q = exp(2πiz) = e?2πy(cos 2πx + isin 2πy) だから,y > 0 なら |q| < 1. q(z + 1) = q(z). つづく https://twitter.com/5chan_nel (5ch newer account) http://rio2016.5ch.net/test/read.cgi/math/1644632425/491
492: 132人目の素数さん [] 2022/04/23(土) 11:44:04.80 ID:MU2asfqc >>491 つづき 3 楕円曲線と保型形式の関係 L 関数 いろいろなゼータ関数がある.楕円曲線の L 関数もその一種. y2 = x3 + ax + b で定義される楕円曲線を E で表わす.各素数 p に対し,整数 ap(E) を定義し,L 関数を L(E,s) = Πp 1/(1 ? ap(E)p?s ? p1?2s) で定義する. ap(E) の定め方: 保型形式との結びつき:無限積を展開すると L(E,s) = Σ∞ n=1 an/ns と表わせる. 志村・谷山予想:Σ n=1 an/q^n が保型形式である. (付録)Fermat の最終定理と楕円曲線
関連年表 https://www.ms.u-tokyo.ac.jp/~t-saito/ce/surijoho.pdf https://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B8%E3%83%A5%E3%83%A9%E3%83%BC%E5%BD%A2%E5%BC%8F#q-%E5%B1%95%E9%96%8B モジュラー形式 5.3 q-展開 モジュラー形式の q-展開 (q-expansion)[note 2] はカスプにおけるローラン級数、あるいは同じことだが(ノーム(nome)の平方)q = exp(2πiz) のローラン級数として表されるフーリエ級数である。実際、複素函数 "exp" はガウス平面上では消えないので q ≠ 0 だが、実軸の負の部分に沿って w → ?∞ とした極限で exp(w)
→ 0 なので、2πiz → ?∞ すなわち虚軸の正の部分に沿って z → i?∞ とした極限で q → 0 である。したがって、q-展開はカスプにおけるローラン級数になっている。 「カスプにおいて有理型」というは、負冪の項の係数のうち 0 でないものが有限個しかないという意味であり、したがって q-展開 f(z)=Σ _n=-m^∞ c_n exp(2π inz)=Σ _n=-m^∞ c_n・q^n. は下に有界かつ q = 0 において有理型である。ここに、係数 cn は f のフーリエ係数であり、整数 m は f の i?∞ における極の位数である。 つづく http://rio2016.5ch.net/test/read.cgi/mat
h/1644632425/492
493: 132人目の素数さん [] 2022/04/23(土) 11:45:07.41 ID:MU2asfqc >>492 つづき https://ja.wikipedia.org/wiki/%E3%83%8E%E3%83%BC%E3%83%A0_(%E6%95%B0%E5%AD%A6) ノーム (数学) 数学の分野、特に楕円函数論において、ノーム (nome) とは、次式によって与えられる特殊函数のことである。 q=e^-π K'/K=e^iπ ω2/ω1=e^iπ/τ, ここに K と iK ′ は1/4周期(英語版)(quarter period)であり、ω1 と ω2 は周期の基本ペア(英語版)(fundamental pair of periods)である。記号としては、1/4周期 K と iK ′ は通常、ヤコビの楕円函
数(Jacobian elliptic functions)の文脈においてのみ用いられるが、1/2周期 ω1 と ω2 はヴァイエルシュトラスの楕円函数の文脈においてのみ用いられる。ω1 と ω2 を1/2周期というより全体の周期を表すために使うアポストル(Apostol)のような著者も居る。 ノームは楕円函数やモジュラ函数が表す値として頻繁に使われる。その一方で、1/4周期が楕円モジュラスの函数であることから、函数として考えることもある。楕円モジュラス、1/4周期、従ってノームの実数値が一意に決まることから、この曖昧さが起きる。 函数 τ = iK ′/K = ω1/ω2 は、楕円
函数の 2つの1/2周期の比なので、1/2周期比(half-period ratio)と呼ばれることもある。 補ノーム(complementary nome) q1 は、 q1=e^-πK/K' で与えられる。 ノームに関連するさらなる定義や関係については、1/2周期(英語版)(quarter period)や楕円積分(elliptic integral)を参照すること。 つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/493
494: 132人目の素数さん [] 2022/04/23(土) 11:45:27.58 ID:MU2asfqc >>493 つづき https://ja.wikipedia.org/wiki/%E8%B0%B7%E5%B1%B1%E2%80%93%E5%BF%97%E6%9D%91%E4%BA%88%E6%83%B3 谷山?志村予想 谷山・志村予想の内容 谷山・志村予想とは、任意の Q 上の楕円曲線は、ある整数 N に対する古典的モジュラー曲線(英語版)(classical modular curve) X_0(N) からの整数係数を持つ有理写像(英語版)(rational map)を通して得ることができる。この曲線には明示的に定義が与えられ、整数係数を持つ。Level N のモジュラのパラメタ表示と呼
ばれる。N がそのようなパラメタ表示の中で最小の整数(モジュラリティ定理自体により、導手という数値として知られる)であれば、このパラメタ表示は、Weight 2 とLevel N の特殊なモジュラ形式、すなわち、(必要であれば同種に従い)正規化された 整数のq-展開をもつ新形式(英語版)(newform)の生成する写像として、定義される。 モジュラリティ定理は、次の解析的なステートメントと密接に関連する。Q 上の楕円曲線 E に楕円曲線のL-函数を対応させる。このL-函数は、ディリクレ級数であり、 L(s,E)=Σ _n=1^∞ a_n/n^s と表すことができる。 従
って、係数 a_n の母函数は、 f(q,E)=Σ _n=1^∞ a_n・q^n である。 q=e^2πiτ を代入すると、複素変数 τ の函数f(τ ,E) のフーリエ展開の形に書くことができ、従って、q-展開の係数は f のフーリエと考えることができる。この方法で得られた函数は、注目すべきことに、ウェイト 2 でレベル N のカスプ形式であり、(モジュラ形式でもあるので)ヘッケ作用素の固有ベクトルとなっている。これがハッセ・ヴェイユ予想(Hasse?Weil conjecture)であり、モジュラリティ定理より従うこととなる。 逆に、ウェイト 2 のモジュラ形式は、楕円曲線の正則微分
(英語版)(holomorphic differential)に対応する。モジュラ曲線のヤコビ多様体は、同種を同一視すると、ウェイト 2 のヘッケ固有形式に対応する既約アーベル多様体の積として書くことができる。1-次元要素は楕円曲線である。(高次元要素も存在し、すべてではないが、ヘッケ固有形式が有理楕円曲線へ対応する。)曲線は、対応するカスプ形式より得られるので、この方法で構成された曲線は、元々の曲線と同種である(一般には同型にはならない)。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1644632425/494
495: 132人目の素数さん [] 2022/04/23(土) 12:57:17.32 ID:MU2asfqc >>490 >宇宙際Teichmuller理論 >[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-12-23) >https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf 上記より下記引用 ・Gaussian integral ∫ ∞ -∞ e-x2 dx = √π ・[archimedean and nonarchimedean] valuations ・Changes of universe as ari
thmetic changes of coordinates 関連 P6 § 1. Review of the computation of the Gaussian integral § 1.1. Inter-universal Teichm¨uller theory via the Gaussian integral The goal of the present paper is to pave the road, for the reader, from a state of complete ignorance of inter-universal Teichm¨uller theory to a state of general appreciation of the “game plan” of inter-universal Teichm¨uller theory by reconsidering the well-known computation of the Gaussian integral ∫ ∞ -∞ e-x2 dx = √π via polar co
ordinates from the point of view of a hypothetical high-school student who has studied one-variable calculus and polar coordinates, but has not yet had any exposure to multi-variable calculus. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/495
496: 132人目の素数さん [] 2022/04/23(土) 12:57:42.85 ID:MU2asfqc >>495 つづき P7 § 1.3. Introduction of identical but mutually alien copies P12 § 2. Changes of universe as arithmetic changes of coordinates § 2.1. The issue of bounding heights: the ABC and Szpiro Conjectures In this case, the height of a rational point may be thought of as a suitable weighted sum of the valuations of the q-parameters of the elliptic curve determined by the rational point at the nonarchimedean primes of potent
ially multiplicative reduction [cf. the discussion at the end of [Fsk], §2.2; [GenEll], Proposition 3.4]. Here, it is also useful to recall [cf. [GenEll], Theorem 2.1] that, in the situation of the ABC or Szpiro Conjectures, one may assume, without loss of generality, that, for any given finite set Σ of [archimedean and nonarchimedean] valuations of the rational number field Q, In particular, when one computes the height of a rational point of the projective line minus three points as a suitable weighted
sum of the valuations of the q-parameters of the corresponding elliptic curve, one may ignore, up to bounded discrepancies, contributions to the height that arise, say, from the archimedean valuations or from the nonarchimedean valuations that lie over some “exceptional” prime number such as 2. P28 It is precisely this state of affairs that results in the quite central role played in inter-universal Teichm¨uller theory by results in [mono-]anabelian geometry, i.e., by results concerned with reconstruct
ing various scheme-theoretic structures from an abstract topological group that “just happens” to arise from scheme theory as a Galois group/´etale fundamental group. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/496
497: 132人目の素数さん [] 2022/04/23(土) 12:58:42.09 ID:MU2asfqc >>496 つづき In this context, we remark that it is also this state of affairs that gave rise to the term “inter-universal”: That is to say, the notion of a “universe”, as well as the use of multiple universes within the discussion of a single set-up in arithmetic geometry, already occurs in the mathematics of the 1960’s, i.e., in the mathematics of Galois categories and ´etale topoi associated to schemes. On the other hand, in
this mathematics of the Grothendieck school, typically one only considers relationships between universes ? i.e., between labelling apparatuses for sets ? that are induced by morphisms of schemes, i.e., in essence by ring homomorphisms. The most typical example of this sort of situation is the functor between Galois categories of ´etale coverings induced by a morphism of connected schemes. By contrast, the links that occur in inter-universal Teichm¨uller theory are constructed by partially dismantling th
e ring structures of the rings in their domains and codomains [cf. the discussion of §2.7, (vii)], hence necessarily result in much more complicated relationships between the universes ? i.e., between the labelling apparatuses for sets ? that are adopted in the Galois categories that occur in the domains and codomains of these links, i.e., relationships that do not respect the various labelling apparatuses for sets that arise from correspondences between the Galois groups that appear and the respective rin
g/scheme theories that occur in the domains and codomains of the links. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/497
498: 132人目の素数さん [] 2022/04/23(土) 12:58:59.81 ID:MU2asfqc >>497 つづき That is to say, it is precisely this sort of situation that is referred to by the term “inter-universal”. Put another way, a change of universe may be thought of [cf. the discussion of §2.7, (i)] as a sort of abstract/combinatorial/arithmetic version of the classical notion of a “change of coordinates”. In this context, it is perhaps of interest to observe that, from a purely classical point of view, the notion of
a [physical] “universe” was typically visualized as a copy of Euclidean three-space. Thus, from this classical point of view, a “change of universe” literally corresponds to a “classical change of the coordinate system ? i.e., the labelling apparatus ? applied to label points in Euclidean three-space”! (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1644632425/498
499: 132人目の素数さん [sage] 2022/04/23(土) 16:00:21.73 まーた、下げマスが「わけもわからずコピペ病」を発症したかw http://rio2016.5ch.net/test/read.cgi/math/1644632425/499
500: 132人目の素数さん [sage] 2022/04/23(土) 16:01:29.04 円も分からん馬鹿に楕円曲線がわかるわけないだろ ドアフォ http://rio2016.5ch.net/test/read.cgi/math/1644632425/500
501: 132人目の素数さん [sage] 2022/04/23(土) 16:02:29.63 ということで全部洗い流すw http://rio2016.5ch.net/test/read.cgi/math/1644632425/501
502: 132人目の素数さん [sage] 2022/04/23(土) 16:03:24.55 ニホンザルのηはいったい何がしたいんだかw http://rio2016.5ch.net/test/read.cgi/math/1644632425/502
503: 132人目の素数さん [sage] 2022/04/23(土) 16:04:22.40 ああ、それから今後ニホンザルの下げマスを”η”の一文字で表す http://rio2016.5ch.net/test/read.cgi/math/1644632425/503
504: 132人目の素数さん [sage] 2022/04/23(土) 16:05:22.68 なんでηかは・・・お察しくださいw https://ja.wikipedia.org/wiki/%CE%97 http://rio2016.5ch.net/test/read.cgi/math/1644632425/504
505: 132人目の素数さん [sage] 2022/04/23(土) 16:11:03.67 ηはこれ読んどけ https://toyokeizai.net/articles/-/475479 http://rio2016.5ch.net/test/read.cgi/math/1644632425/505
506: 132人目の素数さん [sage] 2022/04/23(土) 16:12:24.12 数学好きな大学生や生徒が数学に興味・関心を示すのは、 「なぜそのような性質がいえるのか」というプロセスや、 「そのような応用例もあるとは不思議だ」という楽しい応用話である。 したがって、質問は「どうしてこれが成り立つのですか」という部分に集中する。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/506
507: 132人目の素数さん [sage] 2022/04/23(土) 16:14:20.90 **大学の学生は心掛けがすばらしく、授業態度はかなり良い。 その一方で、数学の学び方が小学生の頃から間違っていたと思われる学生が少なくない。 すなわち、なんでも理解せずに暗記に頼る学習である。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/507
508: 132人目の素数さん [sage] 2022/04/23(土) 16:15:21.40 多項式の微分と積分の計算はできる学生に、 「AグループまたはBグループに所属する学生の人数は、 『Aの人数+Bの人数−AかつBの人数』だから……」と話すと、 「それって暗記した記憶はありませんが、暗記するものですか」 と質問する。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/508
509: 132人目の素数さん [sage] 2022/04/23(土) 16:16:05.08 等式の右辺にある項を左辺に移す移項に関して、 「両辺に−aを加えるから、右辺にあるaを左辺に移すとマイナスが付く」と説明すると、 「初めて移項の意味がわかりました。そうすればよいと単に暗記していました」と答える。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/509
510: 132人目の素数さん [sage] 2022/04/23(土) 16:17:26.57 かけ算の筆算に関して、 「10の位の数をかけるから1つずらして書いて、 100の位の数をかけるから、さらに1つずらして書く。 本当は10の位の数をかけるときは最後の0を省略しないほうがよいかもしれない。 同様に、100の位の数をかけるときは最後の00を省略しないほうがよいかもしれない。 なぜ3桁同士のかけ算の学習が必要かと言えば、 ドミノ倒しやボックスティシュのように、帰納的に次々と続く性質の理解には 『3』が大切なんです」と繰り上がりの仕組みを図に描いて説
明すると、 「よくわかりましたけど、こんな説明を聞いたのは人生で初めてです」と答える。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/510
511: 132人目の素数さん [sage] 2022/04/23(土) 16:20:09.26 学生からの感想文も以下のように興味深いものが多く寄せられる。 ・数学で答えがわからないとき、すぐに答えを見てうつすという行為をしていたが、 そんなことは意味がなく、考えるということの重要性を学んだ。 ・授業では、相手を理解させているかどうかがとても重要なのだと感じた。 ・考えることの重要さや勉強のやり方など、ずっと頭に入れておきたいことばかりだった。 自分に子どもができたら絶対にこの話をして、考える子どもになってほしいと思った。 ・なぜ、このような
公式ができるのかなど、根本から学ぶことができた。 あみだくじの仕組み方の内容がすごいと思い、いろんな人に教えたくなった。 ・問題に対しては、「公式を覚えて正しく使えるようにならなければ」と急いでいた。 その焦りが余計にわからなくさせていたのかもしれない。 ・高校に進学するために塾に通ったとき、なぜこうなるのか?なぜこの解き方をするのか? について、時間をかけて答えてくれる先生に出会いました。 教えてもらった範囲は、時間がたっても忘れませんでした。 苦手な教科が好きな教科にかわる瞬間でした。 http://rio2016.5ch
.net/test/read.cgi/math/1644632425/511
512: 132人目の素数さん [] 2022/04/23(土) 16:22:07.56 算数・数学の内容を理解することには、個人差がかなり大きい。 ゆっくり理解しても何ら問題はないはずだ。 それにもかかわらず、ゆっくり理解する生徒には、 早々と暗記だけの学びを仕向ける教育が 蔓延していることは残念でならない。 日本の将来を考えて、きめ細かい算数・数学教育ができるように 対策を講じてもらいたい。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/512
513: 132人目の素数さん [] 2022/04/23(土) 16:51:27.36 ID:WyXtOS+D こんなとこで書くより啓蒙書を書かないと数学者なら http://rio2016.5ch.net/test/read.cgi/math/1644632425/513
514: 132人目の素数さん [sage] 2022/04/23(土) 17:00:42.11 ID:iiOb+SCx 素人のための啓蒙書なんぞどうでもいい 数学者は論文書いてりゃそれでいい http://rio2016.5ch.net/test/read.cgi/math/1644632425/514
515: 132人目の素数さん [] 2022/04/23(土) 17:42:39.07 ID:MU2asfqc >>513-514 ゴルフとかテニスとか どこの世界でも トーナメントプロ(数学なら先端研究系)とレッスンプロ(大学生教育系)がいるもの (スポーツでは、プロにコーチするプロもいるけどね。大坂 なおみのコーチとか) 少なくとも 何かできないとね あと、いろんな研究所とかでは、他の人たちとグループで貢献できるかどうかでは? AIとかビッグデータとか、あるいは物理系(Kavli IPMUなど)に対して数学的な貢献ができるとか(山下剛先生は、トヨタの研究所だった) ht
tp://rio2016.5ch.net/test/read.cgi/math/1644632425/515
516: 132人目の素数さん [sage] 2022/04/23(土) 17:42:55.62 ID:gsIMRKOc RCS-IUT is indeed a meaningless and absurd theory that leads immediately to a contradiction. R(冗長)C(コピー)S(セタ) is indeed a meaningless and absurd ... http://rio2016.5ch.net/test/read.cgi/math/1644632425/516
517: 132人目の素数さん [] 2022/04/23(土) 17:54:10.99 ID:lgv7EtHh >>485 書いた望月が説明してんのに、査読者がしゃしゃりでるわけねえだろうが。バカなのか。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/517
518: 132人目の素数さん [] 2022/04/23(土) 17:56:29.59 ID:KknOOQbN >>485 論文の査読者というのは、読んで論理的に正しいと判断して通すのよ。 出てこようとこないと、わかってると自己認識してんの。できなきゃ通さない。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/518
519: 132人目の素数さん [sage] 2022/04/23(土) 18:48:02.26 ID:/yT+od0X ショルツやファルティングスさえ理解できない証明を RIMSの査読者は理解しているというのは不自然。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/519
520: 132人目の素数さん [] 2022/04/23(土) 19:00:06.74 ID:ipxut/a4 秀才的業績はその人の存命中に高い評価を得てその時代に歓迎される。 天才的業績はその人の存命中には陽の目を見ない。時代を先取りしすぎている。 秀才は時代の落とし子だが、天才は時代を超越した神の才能。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/520
521: 132人目の素数さん [] 2022/04/23(土) 19:02:38.34 ID:ipxut/a4 虚数も長い間その時代の著名な数学者から否定的裁定を下された 虐げられた歴史を過去に持つんじゃなかったか。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/521
522: 132人目の素数さん [] 2022/04/23(土) 19:06:26.14 ID:WyXtOS+D >>521 近代数学の黎明期と比較しちゃ駄目 http://rio2016.5ch.net/test/read.cgi/math/1644632425/522
523: 132人目の素数さん [sage] 2022/04/23(土) 19:07:31.61 ID:rBQVUUly >>515 なんで他の数学者がrimsのためにひと肌ぬぐ必要がある? そんな必要全くないわ アホか http://rio2016.5ch.net/test/read.cgi/math/1644632425/523
524: 132人目の素数さん [sage] 2022/04/23(土) 19:16:57.76 ID:xagoP+7z 地動説なんて2000年も虐げられてたのに、 モッチーはたったの10年 http://rio2016.5ch.net/test/read.cgi/math/1644632425/524
525: sage [] 2022/04/23(土) 19:45:04.92 ID:ZEV+akYc >>521 >虚数も長い間その時代の著名な数学者から否定的裁定を下された X^2=−1の逆関数だよね。 充満多重同型が否定的裁定を下されたのだよね。 IUT原論文の定義「ある(通常空でない)集合」⇒RCSは空 復元と逆関数は共に「逆だから」揉めるってか。 http://rio2016.5ch.net/test/read.cgi/math/1644632425/525
526: 132人目の素数さん [sage] 2022/04/23(土) 19:54:48.34 ID:WyXtOS+D ORではなくANDである、つまり微妙な関係で宇宙や乗法ー加法は繋がっていると あくまで主張であるが http://rio2016.5ch.net/test/read.cgi/math/1644632425/526
527: 132人目の素数さん [] 2022/04/23(土) 20:45:29.83 ID:MU2asfqc >>495 追加 >宇宙際Teichmuller理論 >[7] The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Inter-universal Teichmuller Theory. PDF NEW !! (2020-12-23) >https://www.kurims.kyoto-u.ac.jp/~motizuki/Alien%20Copies,%20Gaussians,%20and%20Inter-universal%20Teichmuller%20Theory.pdf <”宇宙”について> これ、望月氏の 宇宙 ”relationships between universes”の説明が、下記にあるけど 結構独特で、世間的には、ちょっ
とズレている気がする。「複数の宇宙の使用は、1960年代の数学」(下記)とかね 一方、(後述の)ちょうど1960年代に、数学基礎論で強制法が考えられて、「強制法は集合論の宇宙 V をより大きい宇宙 V* に拡大する」(下記)みたいな話がある だから、数学基礎論の強制法を知っている人(あるいは、いまどき ”universe”の数学的意味を検索した人)は、IUTの”Inter-universal”という語法に違和感を感じる気がする 代数系なり代数幾何にしろ、集合論や圏論としても、せいぜい集合と類までで収まるはず。(圏論でも、”局所的に小さい (locally small
) ”で収まるはず)”宇宙”は、普通は出てこない つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/527
528: 132人目の素数さん [] 2022/04/23(土) 20:46:07.04 ID:MU2asfqc >>527 つづき <下記に対訳を作ってみた> <原文> P27 § 2.10. Inter-universality: changes of universe as changes of coordinates One fundamental aspect of the links [cf. the discussion of §2.7, (i)] ? namely, the Θ-link and log-link ? that occur in inter-universal Teichm¨uller theory is their incompatibility with the ring structures of the rings and schemes that appear in their domains and codomains. In particular, when one consid
ers the result of transporting an ´etale-like structure such as a Galois group [or ´etale fundamental group] across such a link [cf. the discussion of §2.7, (iii)], one must abandon the interpretation of such a Galois group as a group of automorphisms of some ring [or field] structure [cf. [AbsTopIII], Remark 3.7.7, (i); [IUTchIV], Remarks 3.6.2, 3.6.3], i.e., one must regard such a Galois group as an abstract topological group that is not equipped with any of the “labelling structures” that arise from
the relationship between the Galois group and various scheme-theoretic objects. It is precisely this state of affairs that results in the quite central role played in inter-universal Teichm¨uller theory by results in [mono-]anabelian geometry, i.e., by results concerned with reconstructing various scheme-theoretic structures from an abstract topological group that “just happens” to arise from scheme theory as a Galois group/´etale fundamental group. つづく http://rio2016.5ch.net/test/read.cgi/math/16
44632425/528
529: 132人目の素数さん [] 2022/04/23(土) 20:46:24.38 ID:MU2asfqc >>528 つづき <google訳> P27 §2.10。 宇宙際:座標の変化としての宇宙の変化 リンクの1つの基本的な側面[cf. §2.7、(i)]の議論、つまり、宇宙際タイヒミュラー理論で発生するΘリンクとログリンクは、それらのdomains and codomainsとに現れるリングとスキームのリング構造との非互換性です。 特に、ガロア群[またはエタール基本群]のような「エタールのような構造」をそのようなリンクを介して輸送した結果を考えると[cf. §2.7、(iii)]の議論では、あるリン
グ[または体]構造の自己同形群としてのそのようなガロア群の解釈を放棄しなければなりません[cf. [AbsTopIII]、備考3.7.7、(i); [IUTchIV]、備考3.6.2、3.6.3]、つまり、そのようなガロア群は、ガロア群との関係から生じる「ラベリング構造」を備えていない抽象的な位相群と見なす必要があります。 さまざまなスキーム理論オブジェクト。 宇宙際タイヒミュラー理論で[モノ]遠アーベル幾何学の結果、つまり抽象的な位相群からのさまざまな概型理論構造の再構築に関係する結果によって、非常に中心的な役割を果たしているのはまさにこの状況です。 そ
れは、ガロア群/エタール基本群としての概型理論から生じる「たまたま」です。 つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/529
530: 132人目の素数さん [] 2022/04/23(土) 20:47:06.27 ID:MU2asfqc >>529 つづき <原文> In this context, we remark that it is also this state of affairs that gave rise to the term “inter-universal”: That is to say, the notion of a “universe”, as well as the use of multiple universes within the discussion of a single set-up in arithmetic geometry, already occurs in the mathematics of the 1960’s, i.e., in the mathematics of Galois categories and ´etale topoi associated to schemes. On the other
hand, in this mathematics of the Grothendieck school, typically one only considers relationships between universes - i.e., between labelling apparatuses for sets - that are induced by morphisms of schemes, i.e., in essence by ring homomorphisms. The most typical example of this sort of situation is the functor between Galois categories of ´etale coverings induced by a morphism of connected schemes. By contrast, the links that occur in inter-universal Teichm¨uller theory are constructed by partially disma
ntling the ring structures of the rings in their domains and codomains [cf. the discussion of §2.7, (vii)], hence necessarily result in much more complicated relationships between the universes - i.e., between the labelling apparatuses for sets - that are adopted in the Galois categories that occur in the domains and codomains of these links, i.e., relationships that do not respect the various labelling apparatuses for sets that arise from correspondences between the Galois groups that appear and the respe
ctive ring/scheme theories that occur in the domains and codomains of the links. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/530
531: 132人目の素数さん [] 2022/04/23(土) 20:47:34.90 ID:MU2asfqc >>530 つづき <google訳> これに関連して、「宇宙際」という用語を生み出したのもこの状況であることに注意してください: つまり、「宇宙」の概念、および数論幾何学の単一のセットアップの議論内での複数の宇宙の使用は、1960年代の数学、つまりガロアの数学ですでに発生しています。スキームに関連付けられたカテゴリと「古いトポス」。 一方、グロタンディーク派のこの数学では、通常、宇宙間の関係のみを考慮します。 -つまり、スキームの射によって誘発されるセ
ットのラベリング装置間- つまり、本質的に環準同型によるものです。 この種の状況の最も典型的な例は、接続されたスキームの射によって誘発された「エタール射」のガロアカテゴリー間の関手です。 対照的に、宇宙際タイヒミュラー理論で発生するリンクは、ドメインと終域のリングのリング構造を部分的に解体することによって構築されます[cf. §2.7、(vii)]の議論、したがって必然的に結果として 宇宙間のはるかに複雑な関係- つまり、これらのリンクの終域と終域で発生するガロアのカテゴリで採用されているセットのラベリング装置の間で、 つまり
、出現するガロア群と、リンクの終域および終域で発生するそれぞれのリング/スキーム理論との間の対応から生じるセットのさまざまなラベリング装置を尊重しない関係。 つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/531
532: 132人目の素数さん [] 2022/04/23(土) 20:48:50.87 ID:MU2asfqc >>531 つづき <原文> That is to say, it is precisely this sort of situation that is referred to by the term “inter-universal”. Put another way, a change of universe may be thought of [cf. the discussion of §2.7, (i)] as a sort of abstract/combinatorial/arithmetic version of the classical notion of a “change of coordinates”. In this context, it is perhaps of interest to observe that, from a purely classical point of view, the n
otion of a [physical] “universe” was typically visualized as a copy of Euclidean three-space. Thus, from this classical point of view, a “change of universe” literally corresponds to a “classical change of the coordinate system - i.e., the labelling apparatus - applied to label points in Euclidean three-space”! <google訳> つまり、まさにこの種の状況が「宇宙際」という言葉で呼ばれているのです。 言い換えれば、宇宙の変化は考えられるかもしれません[cf. §2.7の議論、(i)]「座標の変化」の古典的な概念の一種
の抽象/組み合わせ/算術バージョンとして。 この文脈では、純粋に古典的な観点から、[物理的]「宇宙」の概念が通常ユークリッド3空間のコピーとして視覚化されたことを観察することはおそらく興味深いことです。 したがって、この古典的な観点から、「宇宙の変化」は文字通り「ユークリッド3空間のラベルポイントに適用される座標系の古典的な変化-つまり、ラベル付け装置-」に対応します。 つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/532
533: 132人目の素数さん [] 2022/04/23(土) 20:49:47.73 ID:MU2asfqc >>532 つづき <原文> Indeed, from an even more elementary point of view, perhaps the simplest example of the essential phenomenon under consideration here is the following purely combinatorial phenomenon: Consider the string of symbols 010 ? i.e., where “0” and “1” are to be understood as formal symbols. Then, from the point of view of the length two substring 01 on the left, the digit “1” of this substring may be specified
by means of its “coordinate relative to this substring”, namely, as the symbol to the far right of the substring 01. In a similar vein, from the point of view of the length two substring 10 on the right, the digit “1” of this substring may be specified by means of its “coordinate relative to this substring”, namely, as the symbol to the far left of the substring 10. On the other hand, neither of these specifications via “substring-based coordinate systems”is meaningful to the opposite length two sub
string; that is to say, only the solitary abstract symbol “1” is simultaneously meaningful, as a device for specifying the digit of interest, relative to both of the “substring-based coordinate systems”. つづく http://rio2016.5ch.net/test/read.cgi/math/1644632425/533
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 469 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s