素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
88: 132人目の素数さん [] 2022/11/02(水) 08:07:28.83 ID:N+Kz71Di 不定方程式の研究に導かれて 素数の規則が発見されてきた http://rio2016.5ch.net/test/read.cgi/math/1640355175/88
181: 132人目の素数さん [sage] 2023/09/17(日) 00:45:26.83 ID:NvL18fxN e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2)) cos(2 π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2)) >cos(2π*19^2/(210*11*13*17)) 1/32 (255255 m - 145721)<n<5/32 (51051 m - 29072) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3433/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((283 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4546/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((137 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3430/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((91 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4547/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((73 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3428/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((-37 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3427/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((-101 i π)/255255) e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3425/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((-229 i π)/255255) http://rio2016.5ch.net/test/read.cgi/math/1640355175/181
201: 132人目の素数さん [sage] 2023/11/26(日) 00:35:25.83 ID:5ylX1SN5 ↓3次元では書けないベクトル和(((x+y+i^m*z)*(x+y-i^m*z)*(x-y+i^m*z)*(x-y-i^m*z)) mが3以上のベクトル和をかけない) √(x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4)=√(((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z))) √(x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4)=√(((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z))) cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^3+e/11^3)) > cos(2pi*(13^2/2310^3)) a = 4 n_1, b = 9 n_2, c = 125 n_3, d = 343 n_4 + 83, e = 1331 n_5 + 205, a = 4 n_1, b = 9 n_2, c = 125 n_3 + 53, d = 7 (49 n_4 + 29), e = 1331 n_5 + 1235, cos(2pi*((2*4+1)/2^3-(3*9+1)/3^3-53/5^3-7*29/7^3+1235/11^3))=cos((91 π)/6163195500) ←7*29が7をもつため非素数 a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 77, d = 343 n_4 + 163, e = 1331 n_5 + 448, cos(2pi*((2*4+1)/2^3-(3*3+1)/3^3-77/5^3-163/7^3+448/11^3))=cos((19 π)/6163195500) a = 4 n_1, b = 3 (3 n_2 + 2), c = 125 n_3 + 29, d = 343 n_4 + 243, e = 1331 n_5 + 691, cos(2pi*((2*4+1)/2^3-(3*6+1)/3^3-29/5^3-243/7^3+691/11^3))=cos((163 π)/6163195500) a = 4 n_1, b = 3 (3 n_2 + 2), c = 125 n_3 + 101, d = 343 n_4 + 123, e = 1331 n_5 + 992, cos(2pi*((2*4+1)/2^3-(3*6+1)/3^3-101/5^3-123/7^3+992/11^3))=cos((53 π)/6163195500) http://rio2016.5ch.net/test/read.cgi/math/1640355175/201
241: 132人目の素数さん [sage] 2023/12/23(土) 02:17:03.83 ID:O5dB6rNY >>240 (((a^2+b^2)*e^(i*2*arctan(a/b))+2^(3/2)*a*b*e^(i*-π/4)))=-a^2+2ab+b^2 (((a^2+b^2)*e^(i*2*arctan(b/a))+2^(3/2)*a*b*e^(i*-π/4)))=a^2+2ab-b^2 (n+1)^2+2n*(n+1)-n^2=(n+1)^2+2(n+2)*(n+1)-(n+2)^2 ←nに何を入れても等しくなる (((2^2+1^2)*e^(i*2*arctan(2/1))+2^(3/2)*2*1*e^(i*-π/4)))=1 (((2^2+1^2)*e^(i*2*arctan(1/2))+2^(3/2)*2*1*e^(i*-π/4)))=7 (((2^2+3^2)*e^(i*2*arctan(3/2))+2^(3/2)*2*3*e^(i*-π/4)))=7 (((2^2+3^2)*e^(i*2*arctan(2/3))+2^(3/2)*2*3*e^(i*-π/4)))=17 (((4^2+3^2)*e^(i*2*arctan(4/3))+2^(3/2)*3*4*e^(i*-π/4)))=17 (((4^2+3^2)*e^(i*2*arctan(3/4))+2^(3/2)*3*4*e^(i*-π/4)))=31 (((4^2+5^2)*e^(i*2*arctan(5/4))+2^(3/2)*5*4*e^(i*-π/4)))=31 (((4^2+5^2)*e^(i*2*arctan(4/5))+2^(3/2)*5*4*e^(i*-π/4)))=49 (((6^2+5^2)*e^(i*2*arctan(6/5))+2^(3/2)*5*6*e^(i*-π/4)))=49 (((6^2+5^2)*e^(i*2*arctan(5/6))+2^(3/2)*5*6*e^(i*-π/4)))=71 ζ1(s)=|ζ1(s)|*e^(i*θ) ←素数のみのゼータ関数(s=0点の時)=1/2^s+1/3^s+1/5^s+・・・ ζ2(s)=|ζ2(s)|*e^(i*(θ+π)) ←非素数のみのゼータ関数(s=0点の時)=1+1/4^s+1/6^s+1/8^s+1/9^s+・・・ ζ1(s)+ζ2(s)=ζ(s) |ζ1(s)|=|ζ2(s)| ζ1(s)*ζ2(s)=|ζ1(s)|*|ζ2(s)|*e^(i*(2θ+π)) ζ1(s)=√(ζ1(s)*ζ2(s))*e^(-iπ/2) ζ2(s)=√(ζ1(s)*ζ2(s))*e^(iπ/2) √(ζ1(s)*ζ2(s))*e^(-iπ/2)+√(ζ1(s)*ζ2(s))*e^(iπ/2)=ζ(s) (√(ζ1(s)*ζ2(s))*e^(-iπ/2)+√(ζ1(s)*ζ2(s))*e^(iπ/2))^2=ζ(s)^2 (ζ1(s)*ζ2(s))*e^(-iπ)+(ζ1(s)*ζ2(s))*e^(iπ)+2*(ζ1(s)*ζ2(s))=ζ(s)^2 ←2*(ζ1(s)*ζ2(s))=ζ(s)^2になる 2^n*(ζ1(s)*ζ2(s))^(1/n)=2*(ζ1(s)*ζ2(s))=(ζ1(s)+ζ2(s))^2=ζ(s)^2 lim [n→∞] 2^(n-1)*(ζ1(s)*ζ2(s))^(1/n)=ζ(s) ←n→無限のとき http://rio2016.5ch.net/test/read.cgi/math/1640355175/241
245: 132人目の素数さん [sage] 2023/12/23(土) 22:07:09.83 ID:O5dB6rNY e^(i*2pi*(a/2^2+b/3+c/5))=e^(i*2pi*(e/60)) ←時計の秒針の回転角度を可変させて1秒ではなく60/2^2秒と60/3秒と60/5秒で動くようにする a≠2n、b≠3n、c≠5nのとき秒針の先が7^2を除きすべて素数になる e^(i*2pi*(a/2^2+b/3+c/5)) e^(i*2pi*(a/2^2+b/3+c/5+d/7)) e^(i*2pi*(1/2^2+1/3+3/5+5/7))=e^(-(43 i π)/210) ←43が素数なので=210-47=163も素数 e^(i*2pi*(1/2^2+1/3+3/5+3/7))=e^(-(163 i π)/210) ←163が素数なので=210-163=47も素数 e^(i*2pi*(1/2^2+1/3+3/5+3/7+10/11))=e^(-(2213 i π)/2310) ←2213が素数なので2310-2213=97も素数 e^(i*2pi*(1/2^2+1/3+3/5+3/7+10/11+5/13))=e^(-(5669 i π)/30030)←5669が素数なので30030-5669=24631も素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/245
268: 132人目の素数さん [sage] 2023/12/25(月) 00:10:58.83 ID:cm14oBhI 1からP(m+1)^2の範囲内には (P(k)はk番目の素数、1<=k<=mの時) 約P(m+1)^2*1/Π(P(k)^n*Π(P(k)^n-P(k)^(n-1))個の素数がある http://rio2016.5ch.net/test/read.cgi/math/1640355175/268
312: 132人目の素数さん [sage] 2023/12/31(日) 14:52:49.83 ID:ZQRjm/0R ゼータ関数をζ(x+i*y)≒1+1/2^(1/2+i*y)+1/3^(1/2+i*y)+1/4^(1/2+i*y)と簡略化 ζ(x+i*y')=ζ(x+i*y)となるときゼロ点しかないと仮定する(y'≠y) |半径1/2^(x/2^m)の円内の余弦の長さ|=Π|(1/2^(x/2^m+i*y'/2)-1/2^(x/2^m+i*y/2+lim[n→m]Σ[k=a→n]i*π/ln2^k)))| |半径1/2^(x/2^m)の円内の余弦の長さ|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) |半径1/P(n)^(x/2^m)の円内の余弦の長さ|=Π(2*1/P(n)^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(n)^k))*lnP(n)/2) |ζ(x+i*y')-ζ(x+i*y)|=Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) +Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2) +Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ← Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2)=0の時0に収束する Π(2*1/2^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))/2) =2^a*1/2^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln2^k))*ln2/2) ←0に収束する必要がある Π(2*1/3^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))/2) =2^a*1/3^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln3^k))*ln3/2) ←0に収束する必要がある Π(2*1/4^(x/2^m))*sin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))/2) =2^a*1/4^(x*(1/2^1+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6+・・))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/ln4^k))*ln4/2) ←0に収束する必要がある |ζ(x+i*y')-ζ(x+i*y)|=lim ΣΠ2^a*1/P(l)^(x*(1/2)/(1/2-1/2^∞))*Πsin((y'-(y+lim[n→m]Σ[k=a→n]i*π/lnP(l)^k))*lnP(l)/2)=0 これが収束するときにx=1/2しかない可能性がある http://rio2016.5ch.net/test/read.cgi/math/1640355175/312
342: 132人目の素数さん [sage] 2024/01/03(水) 01:01:34.83 ID:mP/SslTt F(2)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・ F(3)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・ F(4)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・ F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) http://rio2016.5ch.net/test/read.cgi/math/1640355175/342
476: 132人目の素数さん [sage] 2024/02/03(土) 13:28:02.83 ID:RnpFDdRt 2*3*5*7*(11^60*(1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*11*(13^60*(1/2+2/3+3/5+1/7+1/11)mod1)=1 2*3*5*7*11*13*(17^60*(1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 2*3*5*7*11*13*17*(19^120*(1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 2*3*5*7*11*13*17*19*(23^720*(1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/476
529: 132人目の素数さん [] 2024/08/19(月) 21:41:53.83 ID:l0iPXpsu でもこれだと思うが他人に触らせるもんじゃないよ そしてもうお笑いに復帰したら15000台だぞ 巻き込まれたとか? ( ゚ ⊇ ゚)‘◇‘)∂ω∂)´u`)´ェ`)ゆっくりしなくていいから無期限にしてたらなー http://rio2016.5ch.net/test/read.cgi/math/1640355175/529
628: 132人目の素数さん [sage] 2024/10/01(火) 21:58:42.83 ID:/55La6oX ((2*3*5*7*11-1)*11^n mod (2*3*5*7*11))/11=209,199,89,139,59,19 table(((2*3*5*7*11*13-1)*13^n mod (2*3*5*7*11*13))/13,n=1,10) =2309,2297,2141,113,13*113,617,1091,323,1889,31*67,461,1373,1679, http://rio2016.5ch.net/test/read.cgi/math/1640355175/628
645: 132人目の素数さん [sage] 2024/10/07(月) 00:31:03.83 ID:uQjA25pO 79^55440m mod (2*3*5*7*11*13*17*19*23*29*31*37)=1 (1+N*(2*3*5*7*11*13*17*19*23*29*31*37))^(1/55440)=X X<43^2の整数のとき N,Xが同時に整数になる際、X=素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/645
658: 132人目の素数さん [sage] 2024/11/02(土) 20:42:41.83 ID:T82g2h19 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 2*3*5*7*((1/2+2/3+3/5+2/7)mod1)=11 2*3*5*7*((1/2+1/3+4/5+3/7)mod1)=13 2*3*5*7*((1/2+2/3+1/5+5/7)mod1)=17 2*3*5*7*((1/2+1/3+2/5+6/7)mod1)=19 2*3*5*7*((1/2+1/3+1/5+1/7)mod1)=37 2^(n-1)*((1+1/2+1/2^2+・・・+1/2^(n-1)) mod1)=2^n-1 3^6*(sum(1/3^6,n=0,6) mod1)=364 →364*2+1=3^6 5^6*(sum(1/5^6,n=0,6) mod1)=3906 →3906*2^2+1=5^6 7^6*(sum(1/7^6,n=0,6) mod1)=19608 →19608*2*3+1=7^6 11^6*(sum(1/11^7,n=0,6) mod1)=177156 →177156*2*5+1=11^6 http://rio2016.5ch.net/test/read.cgi/math/1640355175/658
687: 132人目の素数さん [sage] 2025/03/28(金) 21:49:50.83 ID:HB5RGX+F X<Y(Y=任意の素数)のとき X^Y mod Y = X 9^17 mod 17=9 5^23 mod 23=5 X^Y=N*Y+X (X^Y-X)/Y=N (X<Y(Y=任意の素数)のときNは必ず整数になる) (11^17-11)/17=29732178147017280 (30^37-30)/37=121698352943512800810810810810810810810810810810810810 http://rio2016.5ch.net/test/read.cgi/math/1640355175/687
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.028s