素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
20: 132人目の素数さん [sage] 2021/12/25(土) 15:03:41.78 ID:Mb+8rzb8 そうすっか http://rio2016.5ch.net/test/read.cgi/math/1640355175/20
38: 132人目の素数さん [sage] 2021/12/30(木) 15:31:53.78 ID:vE7S0lDL 素数は楽しいよな http://rio2016.5ch.net/test/read.cgi/math/1640355175/38
43: 132人目の素数さん [] 2021/12/30(木) 22:37:06.78 ID:kMEvpIJt 素数の気持ちを考えたことがあるかね? http://rio2016.5ch.net/test/read.cgi/math/1640355175/43
141: 132人目の素数さん [sage] 2023/04/14(金) 01:45:02.78 ID:QoHCV6m7 Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0 非自明なゼロ点の虚部を小さい素数にかけると2πでわった余りがπに近づく ln2*14.1347 mod 2π≒1.1186π ln2*21.022 mod 2π≒0.638π ln2*25.010 mod 2π≒1.518π ln2*30.424 mod 2π≒0.712π (ln2*32.935 mod 2π)/π≒1.266π ln3*14.1347 mod 2π≒0.942892π ln3*21.022 mod 2π≒1.3513π ln3*25.010 mod 2π≒0.7459π ln2*30.424 mod 2π≒0.6392π (ln3*32.935 mod 2π)/π≒1.517π ln5*14.1347 mod 2π≒1.2412π ln5*21.022 mod 2π≒0.7695π ln5*25.010 mod 2π≒0.8126π ln2*30.424 mod 2π≒1.5862π (ln5*32.935 mod 2π)/π≒0.872π 1/√{(1+1/p(k)+2/√p(k))<1/√{(1+1/p(k)-2*cos(ylnp(k))/√p(k))<1/√{(1+1/p(k)-2/√p(k)) 1+1/p(k)-2*cos(ylnp(k))/√p(k)>1のとき 1/lnp(k)*arccos(1/2*1/√p(k))>y 1/lnp(k)*(2nπ+arccos(1/2*1/√p(k)))<y<1/lnp(k)*(2(n+1)π-arccos(1/2*1/√p(k))) ylnp(k)が下の範囲内の時分母は1より大きいため積が無限に大きくなる (2nπ+0.384947π)<y*ln2<(2(n+1)π-0.384947π) (2nπ+0.40678π)<y*ln3<(2(n+1)π-0.40678π) (2nπ+0.42821π)<y*ln3<(2(n+1)π-0.42821π) http://rio2016.5ch.net/test/read.cgi/math/1640355175/141
226: 132人目の素数さん [sage] 2023/12/18(月) 20:28:00.78 ID:G1nocuy9 cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+2)/3^2+(c)/5^2+(d)/7^2)) > cos(2pi*(11*13/(2*3*5*7)^2)) a = 2 n_1, b = 3 n_2, c = 25 n_3, d = 49 n_4 + 26, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1, b = 3 n_2, c = 25 n_3 + 7, d = 49 n_4 + 12, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1, b = 3 n_2 + 1, c = 25 n_3 + 8, d = 49 n_4 + 43, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1, b = 3 n_2 + 2, c = 25 n_3 + 24, d = 49 n_4 + 44, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z a = 2 n_1 + 1, b = 3 n_2 + 1, c = 25 n_3 + 3, d = 7 (7 n_4 + 4), n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z e^(i*2pi*((2*2+1)/2^2+(3*3+2)/3^2+(7)/5^2+(12)/7^2))=e^(-(127 i π)/22050) e^(i*2pi*((2*2+1)/2^2+(3*1+2)/3^2+(8)/5^2+(43)/7^2))=e^((137 i π)/22050) 1>e^(i*2pi*-(127 +(2*3*5*7)n)/(2*3*5*7)^2)>cos(2pi*(11^2/(2*3*5*7)^2))を満たすとき|-127+210n|=83は素数 1>e^(i*2pi*(137 +(2*3*5*7)n)/(2*3*5*7)^2)>cos(2pi*(11^2/(2*3*5*7)^2))を満たすとき|137+210n|=73は素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/226
345: 132人目の素数さん [sage] 2024/01/03(水) 23:43:59.78 ID:mP/SslTt a^n+b^n≠c^n (a,b,c,は互いに素) n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる x1=x2=x3にならない(x1=x2=x3=0を除く) e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n)) e^(i*2π*(x1/(3*5)^3+x2/(2*5)^3))=e^(i*2π*(x3/(2*3)^3)) x1 = -8, x2 = 7, x3 = 1 x1 = 0, x2 = 0, x3 = 0 x1 = 8, x2 = -7, x3 = -1 e^(i*2π*(8/(3*5)^3-7/(2*5)^3))=e^(i*2π*(-1/(2*3)^3))=e^(-(i π)/108) e^(i*2π*(x1/(5*7)^3+x2/(2*7)^3))=e^(i*2π*(x3/(2*5)^3)) x1 = -8, x2 = 6, x3 = 2 x1 = -4, x2 = 3, x3 = 1 x1 = 0, x2 = 0, x3 = 0 x1 = 4, x2 = -3, x3 = -1 x1 = 8, x2 = -6, x3 = -2 http://rio2016.5ch.net/test/read.cgi/math/1640355175/345
387: 132人目の素数さん [sage] 2024/01/12(金) 21:17:34.78 ID:Uq67vDTi 1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s)=0 (Σ(n=1~∞)(-1)^(n-1)(floor[cos(n*2pi/m)^2])/n^(s))=0 1/(m)^s-1/(2m)^s+1/(3m)^s-1/(4m)^s+・・・・=0 floor[cos(n*2pi/m)^2]=floor[1/2 (1+cos((4 n π)/m))] 1/(1-1/2^(zetazero[1]-1))*1/(1-1/15^(zetazero[1]-1))*(Σ(n=1~∞)(-1)^(n-1)(1-15*(floor[1/2 (1+cos((4 n π)/15))]))/n^(zetazero[1]))=0 http://rio2016.5ch.net/test/read.cgi/math/1640355175/387
401: 132人目の素数さん [sage] 2024/01/14(日) 01:38:21.78 ID:hK2Tvkd7 Π(k=1〜n)(prime[k])未満の素数prime[k](1番目からn番目の素数)を素因数に持たない集合をX(n)[k](k=1~m)とする (-1)^n=Σ(l=1~m)e^(i*2pi*(X(n)[l]/(Π(k=1〜n)(prime[k]))) e^(i*2π*1/2)=-1 e^(i*2π*1/6)+e^(i*2π*5/6)=1(1,3,5) 上の項目を足したとき e^(i*2π*1/30)+e^(i*2π*7/30)+e^(i*2π*11/30)+e^(i*2π*13/30)+e^(i*2π*17/30)+e^(i*2π*19/30)+e^(i*2π*23/30)+e^(i*2π*29/30)=-1(1,5,7,11,13,15,17,19,23,25,29) 上の項目を足したとき e^(i*2π*1/210)+e^(i*2π*11/210)+e^(i*2π*13/210)+e^(i*2π*17/210)+e^(i*2π*19/210)+e^(i*2π*23/210)+e^(i*2π*29/210)+・・・=1(1,7,11,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき e^(i*2π*1/2310)+e^(i*2π*17/2310)+e^(i*2π*19/2310)+・・・=-1(1,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき e^(i*2π*1/Π(k=1〜n-1)(prime[k]))+e^(i*2π*prime[n]/Π(k=1〜n-1)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n-1)(prime[k]))+・・・=(-1)^(n-1) e^(i*2π*1/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+2]/Π(k=1〜n)(prime[k]))+・・・=(-1)^(n) 足していくと2項目以降に e^(i*2π*1/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n]/Π(k=1〜n)(prime[k]))+e^(i*2π*prime[n+1]/Π(k=1〜n)(prime[k]))+・・・=-1+1-1+1-1+1-1+・・・+(-1)^(n) http://rio2016.5ch.net/test/read.cgi/math/1640355175/401
431: 132人目の素数さん [sage] 2024/01/21(日) 16:29:48.78 ID:h+lG8rsE (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17 (2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13*17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13 (2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17 (2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)は(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)でもあり、(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)でもある http://rio2016.5ch.net/test/read.cgi/math/1640355175/431
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.424s*