素数の規則を見つけたい。。。 (701レス)
上下前次1-新
抽出解除 レス栞
20: 2021/12/25(土)15:03:41.78 ID:Mb+8rzb8(9/9) AAS
そうすっか
38: 2021/12/30(木)15:31:53.78 ID:vE7S0lDL(1) AAS
素数は楽しいよな
43: 2021/12/30(木)22:37:06.78 ID:kMEvpIJt(1) AAS
素数の気持ちを考えたことがあるかね?
141: 2023/04/14(金)01:45:02.78 ID:QoHCV6m7(1) AAS
Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0
非自明なゼロ点の虚部を小さい素数にかけると2πでわった余りがπに近づく
ln2*14.1347 mod 2π≒1.1186π
ln2*21.022 mod 2π≒0.638π
ln2*25.010 mod 2π≒1.518π
ln2*30.424 mod 2π≒0.712π
(ln2*32.935 mod 2π)/π≒1.266π
省18
226: 2023/12/18(月)20:28:00.78 ID:G1nocuy9(2/2) AAS
cos(2pi*(11^2/(2*3*5*7)^2))>cos(2pi*((2*a+1)/2^2+(3*b+2)/3^2+(c)/5^2+(d)/7^2)) > cos(2pi*(11*13/(2*3*5*7)^2))
a = 2 n_1, b = 3 n_2, c = 25 n_3, d = 49 n_4 + 26, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1, b = 3 n_2, c = 25 n_3 + 7, d = 49 n_4 + 12, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1, b = 3 n_2 + 1, c = 25 n_3 + 8, d = 49 n_4 + 43, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1, b = 3 n_2 + 2, c = 25 n_3 + 24, d = 49 n_4 + 44, n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
a = 2 n_1 + 1, b = 3 n_2 + 1, c = 25 n_3 + 3, d = 7 (7 n_4 + 4), n_1 element Z, n_2 element Z, n_3 element Z, n_4 element Z
e^(i*2pi*((2*2+1)/2^2+(3*3+2)/3^2+(7)/5^2+(12)/7^2))=e^(-(127 i π)/22050)
省3
345: 2024/01/03(水)23:43:59.78 ID:mP/SslTt(8/8) AAS
a^n+b^n≠c^n (a,b,c,は互いに素)
n>=3以上の時x1≠x2、x2≠x3、x1≠x3のいづれかになる
x1=x2=x3にならない(x1=x2=x3=0を除く)
e^(i*2π*(x1/(b*c)^n+x2/(a*c)^n))=e^(i*2π*(x3/(a*b)^n))
e^(i*2π*(x1/(3*5)^3+x2/(2*5)^3))=e^(i*2π*(x3/(2*3)^3))
x1 = -8, x2 = 7, x3 = 1
x1 = 0, x2 = 0, x3 = 0
省8
387: 2024/01/12(金)21:17:34.78 ID:Uq67vDTi(2/5) AAS
1/(1-1/2^(s-1))*1/(1-1/m^(s-1))*(Σ(n=1~∞)(-1)^(n-1)(1-m*(floor[cos(n*2pi/m)^2]))/n^(s))=ζ(s)=0
(Σ(n=1~∞)(-1)^(n-1)(floor[cos(n*2pi/m)^2])/n^(s))=0 1/(m)^s-1/(2m)^s+1/(3m)^s-1/(4m)^s+・・・・=0
floor[cos(n*2pi/m)^2]=floor[1/2 (1+cos((4 n π)/m))]
1/(1-1/2^(zetazero[1]-1))*1/(1-1/15^(zetazero[1]-1))*(Σ(n=1~∞)(-1)^(n-1)(1-15*(floor[1/2 (1+cos((4 n π)/15))]))/n^(zetazero[1]))=0
401: 2024/01/14(日)01:38:21.78 ID:hK2Tvkd7(1/6) AAS
Π(k=1〜n)(prime[k])未満の素数prime[k](1番目からn番目の素数)を素因数に持たない集合をX(n)[k](k=1~m)とする
(-1)^n=Σ(l=1~m)e^(i*2pi*(X(n)[l]/(Π(k=1〜n)(prime[k])))
e^(i*2π*1/2)=-1
e^(i*2π*1/6)+e^(i*2π*5/6)=1(1,3,5) 上の項目を足したとき
e^(i*2π*1/30)+e^(i*2π*7/30)+e^(i*2π*11/30)+e^(i*2π*13/30)+e^(i*2π*17/30)+e^(i*2π*19/30)+e^(i*2π*23/30)+e^(i*2π*29/30)=-1(1,5,7,11,13,15,17,19,23,25,29) 上の項目を足したとき
e^(i*2π*1/210)+e^(i*2π*11/210)+e^(i*2π*13/210)+e^(i*2π*17/210)+e^(i*2π*19/210)+e^(i*2π*23/210)+e^(i*2π*29/210)+・・・=1(1,7,11,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき
e^(i*2π*1/2310)+e^(i*2π*17/2310)+e^(i*2π*19/2310)+・・・=-1(1,13,17,19,23,29,31,35,37,41,43,49,53,・・・)上の項目を足したとき
省4
431: 2024/01/21(日)16:29:48.78 ID:h+lG8rsE(7/12) AAS
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+17*13)*(1*17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)=13*17
(2*3*5*7*11)*((2^N1*3^N2*5^N3*7^N4*11^N5+13*17)*(1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)=17*13
(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)=13*17
(2*3*5*7*11)*((1/2+1/3+3/5+4/7+1/11)mod1)は(2*3*5*7*11)*((1*13/2+1*13/3+1*13/5+3*13/7+6*13/11)mod1)でもあり、(2*3*5*7*11)*((17/2+2*17/3+4*17/5+6*17/7+2*17/11)mod1)でもある
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.028s