素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
13: 132人目の素数さん [sage] 2021/12/25(土) 10:47:51.46 ID:Mb+8rzb8 訂正 {n∈N|nは素数} http://rio2016.5ch.net/test/read.cgi/math/1640355175/13
21: 132人目の素数さん [] 2021/12/25(土) 23:58:04.46 ID:+sMKLuV4 「規則」の定義はなんだよ n番目の素数を表すnの式なんて腐るほどたくさんあるからな?? http://rio2016.5ch.net/test/read.cgi/math/1640355175/21
29: 132人目の素数さん [age] 2021/12/28(火) 14:40:48.46 ID:ssWwgjNQ >>28 計算してみると出た数字の近くには素数はあるけど素数は出てこなった http://rio2016.5ch.net/test/read.cgi/math/1640355175/29
79: 132人目の素数さん [sage] 2022/10/29(土) 13:05:32.46 ID:7zQTjzXt 世界中にどのくらいのひとがいて 素数や数学に興味を持っているひとがどのくらいいて 歴代のその中にはラマヌジャンみたいな天才もいて・・・ と考えてみれば、そんな簡単に未知の法則なんて 落ちてないと気づくはず。 「自分にだけ誰も気づいていない奇蹟のようなアイデアが浮かぶ」 と思うのは精神が幼稚。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/79
160: 132人目の素数さん [sage] 2023/05/29(月) 13:14:05.46 ID:OThGd2Z7 e^(i*π*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i1403π/2310) ←1403 =23*61 e^(i*π*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i907π/2310) ←907 =素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^2*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(i1367π/2310) ←1367 =素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^2*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i943π/2310) ←943 =23*41 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^3*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(i2017π/2310) ←2017=素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^3*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i293π/2310) ←293=素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^4*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i1333π/2310) ←1333=31*43 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^4*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i977π/2310) ←977=素数 e^(i*π*(13*17*19*23*29*31*37*41*43*47)^a*(1/2+1/3+1/5+1/7+1/11-b/(13*17*19*23*29*31*37*41*43*47)) ) (13*17*19*23*29*31*37*41*43*47)の指数aとbを変更することで2310以下の素数をたくさん求められる http://rio2016.5ch.net/test/read.cgi/math/1640355175/160
205: 132人目の素数さん [sage] 2023/12/03(日) 01:14:04.46 ID:ytu0Oj+u cos(2pi*((1/2+1)/2^2+(2/3+1)/3^2+(a/5+1)/5^2+(b/7+1)/7^2+(c/11+1)/11^2)) > cos(2pi*(13^2/(2*3*5*7*11)^3)) a = 125 n_1 + 29, b = 343 n_2 + 82, c = 1331 n_3 + 1198, n_1 element Z, n_2 element Z, n_3 element Z e^(i*2pi*((1/2+1)/2^2+(2/3+1)/3^2+(29/5+1)/5^2+(82/7+1)/7^2+(1198/11+1)/11^2))=e^(-(23 i π)/6163195500) http://rio2016.5ch.net/test/read.cgi/math/1640355175/205
261: 132人目の素数さん [sage] 2023/12/24(日) 23:49:32.46 ID:JbDEdDB5 cos(2pi*(a/2^n+b/3^n+c/5^n+d/7^n))=cos(2pi*(X/(2*3*5*7)^n) Xに出てくる数の個数は全体で(2*3*5*7)^n個 (2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)個の2,3,5,7を素因数に持たない数ができる(11以上の素因数の積になる可能性が出てしまう) (2*3*5*7)^n-(2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)個は必ず2,3,4,5の最低どれか1つを素因数に持つ数になる 2,3,5,7を素因数に持たない数が円周上に均等に分布していると仮定するとき範囲内にある数は 約(2^n-2)*(3^n-3)*(5^n-5)*(7^n-7)*(2*11^2)/(2*3*5*7)^n個とみなせる http://rio2016.5ch.net/test/read.cgi/math/1640355175/261
356: 132人目の素数さん [sage] 2024/01/06(土) 21:27:13.46 ID:MvCtGzfL (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) a=3 b=1 c=1のとき 0になる 0=e^(i*2π*1/(8*3*5))+e^(i*2π*7/(8*3*5))+e^(i*2π*11/(8*3*5))+e^(i*2π*13/(8*3*5))+e^(i*2π*17/(8*3*5))+e^(i*2π*19/(8*3*5))+e^(i*2π*23/(8*3*5))+e^(i*2π*29/(8*3*5)) ←(5.132689822507279173528306376440040126225812904101791511905651606... + 5.132689822507279173528306376440040126225812904101791511905651606... i) +e^(i*2π*31/(8*3*5))+e^(i*2π*37/(8*3*5))+e^(i*2π*41/(8*3*5))+e^(i*2π*43/(8*3*5))+e^(i*2π*47/(8*3*5))+e^(i*2π*49/(8*3*5))+e^(i*2π*53/(8*3*5))+e^(i*2π*59/(8*3*5)) ←(-5.132689822507279173528306376440040126225812904101791511905651606... + 5.132689822507279173528306376440040126225812904101791511905651606... i) +e^(i*2π*61/(8*3*5))+e^(i*2π*67/(8*3*5))+e^(i*2π*71/(8*3*5))+e^(i*2π*73/(8*3*5))+e^(i*2π*77/(8*3*5))+e^(i*2π*79/(8*3*5))+e^(i*2π*83/(8*3*5))+e^(i*2π*89/(8*3*5)) ←(-5.132689822507279173528306376440040126225812904101791511905651606... - 5.132689822507279173528306376440040126225812904101791511905651606... i) +e^(i*2π*91/(8*3*5))+e^(i*2π*97/(8*3*5))+e^(i*2π*101/(8*3*5))+e^(i*2π*103/(8*3*5))+e^(i*2π*107/(8*3*5))+e^(i*2π*109/(8*3*5))+e^(i*2π*113/(8*3*5))+e^(i*2π*119/(8*3*5)) ←(5.132689822507279173528306376440040126225812904101791511905651606... - 5.132689822507279173528306376440040126225812904101791511905651606... i) http://rio2016.5ch.net/test/read.cgi/math/1640355175/356
583: 132人目の素数さん [sage] 2024/08/31(土) 23:47:54.46 ID:W2997a1V a*b*c*((x/a+y/b+z/c)mod1)=n n=1以上a*b*c未満のa,b,cを素因数に持たない数の集合 x,y,zの集合はa,b,cのみで表せる Σx=(a-1)*(b-1)*(c-1)/2*a Σy=(a-1)*(b-1)*(c-1)/2*b Σz=(a-1)*(b-1)*(c-1)/2*c http://rio2016.5ch.net/test/read.cgi/math/1640355175/583
690: 132人目の素数さん [sage] 2025/03/29(土) 14:43:19.46 ID:AASfiNUA 2*3*5*7*((1^(2*n)/2+1^(3*n)/3+3^(5*n)/5+4^(7*n)/7)mod1)=1, 193, 79, 127, 151, 163, 169, 67, 121, 43, 109, 37,) a*b*c*(x/a+y/b+z/c) mod 1 =1のとき a*b*c*(x^(a*n)/a+y^(b*n)/b+z^(c*n)/c) mod 1 で出る数はa*b*c未満かつ周期性があり素数か素数の二乗になる可能性がある http://rio2016.5ch.net/test/read.cgi/math/1640355175/690
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.483s*