素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
170: 132人目の素数さん [sage] 2023/09/07(木) 00:16:48.31 ID:zJAgvXPW e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/5)/11^3))=e^((23 i π)/139755) e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/7)/11^3))=e^((47 i π)/139755) e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+4/7)/11^3))=e^(-(13 i π)/139755) floor((1/2+1/3+1/5+1/7)*11^n)+4/7)のときfloor((1/2+1/3+1/5+1/7)*11^n)+4/7)は素因数11をn個以上もたない e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^3)+8/11)/13^3))=e^((19 i π)/230685) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+11/13)/17^3))=e^(-(1171 i π)/4339335) e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+22/13)/17^3))=e^(-(45317 i π)/73768695) http://rio2016.5ch.net/test/read.cgi/math/1640355175/170
462: 132人目の素数さん [sage] 2024/01/27(土) 21:34:04.31 ID:G74Xg1V/ P(k)=k番目の素数 1からn番目の素数積に1からn番目の素数の逆数和(ak=は任意の大きさの分子)をかけてP(n+1)になるとき 2*3*5*7*11*・・・*P(n)*((a1/2+a2/3+a3/5+a4/7+a5/11+・・・+an/P(n))mod1)=P(n+1)のとき ak*Π(m=1~n(kを除く))P(m) mod P(k)=P(n+1)-P(k)*Aになる ←k番目の素数の分子にk番目を除く1からn番目の素数をかけてk番目の素数で割るとすべてP(n+1)-P(k)*Aになる 2*3*5*7*11*13*17*19*23*29*((1/2+1/3+1/5+2/7+9/11+3/13+5/17+13/19+19/23+24/29)mod1)=31 2*3*5*7*11*13*17*19*23*29*24/29 mod 29=2=31-29 2*3*5*7*11*13*17*19*23*29*19/23 mod 23=8=31-23 2*3*5*7*11*13*17*19*23*29*13/19 mod 19=12=31-19 2*3*5*7*11*13*17*19*23*29*5/17 mod 17=14=31-17 2*3*5*7*11*13*17*19*23*29*3/13 mod 13=5=31-13*2 http://rio2016.5ch.net/test/read.cgi/math/1640355175/462
641: 132人目の素数さん [sage] 2024/10/06(日) 23:06:34.31 ID:fimbC5jl (1+N*(2*3*5*7*11*13*17))^(1/240)=任意の素数積 ←任意の素数積に19以上の素数積を入れるときNは整数になる (1+N*(2*3*5*7*11*13*17))^(1/240)=37*19 N = 364144496963529146373038268986706815806913366282371196800758616324327590845497179544257313641271208248410932534424620475769616180747009362581267624103363985306127152162463616588479425367966609756755807547394620569265681744378789761384880054301611073427293388476197607203388399881310470497623270531513517548778542277172928110152653058208631706908279694608250027639340104437622839129407179933580581237553781953516410383316476617957283341675333351578109557227824995715310046545143207175129038005084145934297865720469084865382628522935666037843748709279252857268780029331677009847023386037732606960498933746869921718575672626044427975618913801974795432169582740325805992921449658880 http://rio2016.5ch.net/test/read.cgi/math/1640355175/641
664: 132人目の素数さん [sage] 2024/11/02(土) 23:03:38.31 ID:T82g2h19 (2^k-1)=a*b=(2^l*(sum(?/2^n,n=1,l) mod1))*(2^m*(sum(?/2^n,n=1,m) mod1)) 2^k=(2^l)*(2^m) →k=l+m (2^k-1)=a*b=(2^(k-m)*(sum(?/2^n,n=1,(k-m)) mod1))*(2^m*(sum(?/2^n,n=1,m) mod1)) (sum(?/2^n,n=1,(k-m)) mod1)*(sum(?/2^n,n=1,m) mod1)=(sum(1/2^n,n=0,k) mod1) 2^6-1=63=7*9=2^(6-m)*(sum(?/2^n,n=1,(6-m)) mod1)*2^m*(sum(?/2^n,n=1,m) mod1) =2^3*((1/2+1/2^2+1/2^3) mod 1)*2^2*((1/2+1/2^2) mod 1)*2^2*((1/2+1/2^2) mod 1) http://rio2016.5ch.net/test/read.cgi/math/1640355175/664
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.318s*