素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
87: 132人目の素数さん [] 2022/11/01(火) 17:50:07.18 ID:z939ax0v Riemann ζ の非自明な零点の虚部の数論的意味はなんだね? 超越数なのか、明示式とか数論的性質はなんかわかっているのか? 俺にはわからんが http://rio2016.5ch.net/test/read.cgi/math/1640355175/87
117: 132人目の素数さん [sage] 2022/12/11(日) 23:57:25.18 ID:NlC2JE6A y*ln1+y*ln2+y*ln3+・・・・+y*lnN=2Aπ+(N-1)π 2Aπ=y*lnk/2πの商の総和(A=整数) (N-1)π=y*lnk/2πの余りの総和(N=整数) y=(2A+(N-1))π/ln(Πn) (2A'+(N-1))π/ln(Πn)-(2A+(N-1))π/ln(Πn)=2(A'-A)π/ln(Πn)←ゼロ点の間隔になる http://rio2016.5ch.net/test/read.cgi/math/1640355175/117
163: 132人目の素数さん [sage] 2023/07/14(金) 12:31:43.18 ID:1XN1Q0I4 1/(2*3*5)の刻みにすることで変化量を減らす e^(i*π*(13/7+1/(2*3*5)))=e^(i*π*-23/750) e^(i*π*(13/7+7/(2*3*5)))=e^(i*π*19/750) e^(i*π*(13/7+11/(2*3*5)))=e^(i*π*47/750) e^(i*π*(13/7+13/(2*3*5)))=e^(i*π*61/750) e^(i*π*(13/7+17/(2*3*5)))=e^(i*π*89/750) e^(i*π*(21/11+11/(2*3*5*7)))=e^(i*π*-89/2310) e^(i*π*(21/11+13/(2*3*5*7)))=e^(i*π*-67/2310) e^(i*π*(21/11+17/(2*3*5*7)))=e^(i*π*-23/2310) e^(i*π*(21/11+19/(2*3*5*7)))=e^(i*π*-1/2310) e^(i*π*(21/11+23/(2*3*5*7)))=e^(i*π*43/2310) e^(i*π*(21/11+29/(2*3*5*7)))=e^(i*π*109/2310) e^(i*π*(21/11+31/(2*3*5*7)))=e^(i*π*131/2310) e^(i*π*(25/13+157/(2*3*5*7*11)))=e^(i*π*-269/30030) e^(i*π*(25/13+163/(2*3*5*7*11)))=e^(i*π*-191/30030) e^(i*π*(25/13+167/(2*3*5*7*11)))=e^(i*π*-139/30030) e^(i*π*(25/13+173/(2*3*5*7*11)))=e^(i*π*-61/30030) e^(i*π*(25/13+179/(2*3*5*7*11)))=e^(i*π*17/30030) e^(i*π*(25/13+181/(2*3*5*7*11)))=e^(i*π*43/30030) e^(i*π*(25/13+191/(2*3*5*7*11)))=e^(i*π*173/30030) e^(i*π*(25/13+193/(2*3*5*7*11)))=e^(i*π*199/30030) e^(i*π*(25/13+197/(2*3*5*7*11)))=e^(i*π*251/30030) http://rio2016.5ch.net/test/read.cgi/math/1640355175/163
319: 132人目の素数さん [sage] 2023/12/31(日) 22:40:13.18 ID:ZQRjm/0R (1-1/4^(s-1))ζ(s)=Σ1/n^(s)-4*Σ1/(4n)^s=1/1^s+1/2^s+1/3^s-3/4^s+1/5^s+1/6^s+1/7^s-3/8^s+1/9^s+・・・ ((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1,・・・ ζ(s)=1/(1-1/4^(s-1))*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/n^s ζ(1/2)=1/(1-√4)*Σ((2*cos((n+2)*π/2))+(-1)^(n+1))/√n=-1.46=1/(1-√2)*Σ(-1)^(n-1)/√n=1/(1-√3)*Σ(-2*cos((n)*2π/3))/√n http://rio2016.5ch.net/test/read.cgi/math/1640355175/319
668: 132人目の素数さん [sage] 2024/11/03(日) 15:15:11.18 ID:Vpu5Dvbs (e^(i*2pi*n*32/33)+e^(i*2pi*n*31/33)+e^(i*2pi*n*29/33)+e^(i*2pi*n*28/33)+e^(i*2pi*n*26/33)+e^(i*2pi*n*25/33) +e^(i*2pi*n*23/33)+e^(i*2pi*n*20/33)+e^(i*2pi*n*19/33)+e^(i*2pi*n*17/33)) (e^(i*2pi*13*32/33)+e^(i*2pi*13*31/33)+e^(i*2pi*13*29/33)+e^(i*2pi*13*28/33)+e^(i*2pi*13*26/33)+e^(i*2pi*13*25/33) +e^(i*2pi*13*23/33)+e^(i*2pi*13*20/33)+e^(i*2pi*13*19/33)+e^(i*2pi*13*17/33)) こっちも同様に実部は必ず1/2 0<X<(a*b*c)/2かつX=a,b,cの素因数を持たない数の集合の時、n=a,b,cの素因数を持たない数をいれると必ず以下になる Σe^(i*2pi*n*X/(a*b*c))=1/2+i*Y(Y=任意の値) (a*b*c)/2<X<(a*b*c)かつX=a,b,cの素因数を持たない数の集合の時、n=a,b,cの素因数を持たない数をいれると必ず以下になる Σe^(i*2pi*n*X/(a*b*c))=1/2+i*Y(Y=任意の値) http://rio2016.5ch.net/test/read.cgi/math/1640355175/668
672: 132人目の素数さん [sage] 2024/11/09(土) 16:45:00.18 ID:bF7P4dMS (1*n)mod(2^2*3*5)+(7*n)mod(13*5)+(11*n)mod(2^2*3*5)+(13*n)mod(2^2*3*5)+(17*n)mod(2^2*3*5)+(19*n)mod(2^2*3*5)+(23*n)mod(2^2*3*5)+(29*n)mod(2^2*3*5) +(31*n)mod(2^2*3*5)+(37*n)mod(13*5)+(41*n)mod(2^2*3*5)+(43*n)mod(2^2*3*5)+(47*n)mod(2^2*3*5)+(49*n)mod(2^2*3*5)+(53*n)mod(2^2*3*5)+(59*n)mod(2^2*3*5) =1+7+11+13+17+19+23+29+31+37+41+43+47+49+53+59=480 http://rio2016.5ch.net/test/read.cgi/math/1640355175/672
680: 132人目の素数さん [sage] 2024/11/27(水) 01:01:21.18 ID:aI1eGf+W prime(n+1)^2×Π(1-1/prime(n))=prime(n+1)^2/log(prime(n+1)^2) prime(n+1)=e^(1/2×1/Π(1-1/prime(n))) prime(∞)=e^(ζ(1)/2)←無限大の素数 http://rio2016.5ch.net/test/read.cgi/math/1640355175/680
689: 132人目の素数さん [sage] 2025/03/29(土) 14:38:38.18 ID:AASfiNUA 2*3*5*7*((1^2/2+1^3/3+3^5/5+4^7/7)mod1)=1 2*3*5*7*((1^4/2+1^9/3+3^25/5+4^49/7)mod1)=1 2*3*5*7*((1^8/2+1^27/3+3^125/5+4^343/7)mod1)=1 2*3*5*7*((1^(2^n)/2+1^(3^n)/3+3^(5^n)/5+4^(7^n)/7)mod1)=1 2*3*5*7*((1^4/2+1^6/3+3^10/5+4^14/7)mod1)=193 2*3*5*7*((1^6/2+1^9/3+3^15/5+4^21/7)mod1)=79 2*3*5*7*((1^8/2+1^12/3+3^20/5+4^28/7)mod1)=127 2*3*5*7*((1^10/2+1^15/3+3^25/5+4^35/7)mod1)=151 2*3*5*7*((1^12/2+1^18/3+3^30/5+4^42/7)mod1)=163 2*3*5*7*11*((1/2+2^(3*n)/3+3^(5*n)/5+1/7+1/11) mod1)=1,2003,(1849=43^2),617 http://rio2016.5ch.net/test/read.cgi/math/1640355175/689
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.432s*