素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
8: 132人目の素数さん [] 2021/12/25(土) 09:53:18.17 ID:iljqzYq3 >>6 マジかー…頑張る… http://rio2016.5ch.net/test/read.cgi/math/1640355175/8
189: 132人目の素数さん [sage] 2023/10/22(日) 11:39:45.17 ID:1rLOY4nu cos(2pi*(1-((n/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6)) > cos(2pi*(121/(2*3*5*7)^6)) n = 2858870700000 m, m element Z n = 4 (714717675000 m + 714717674999), m element Z n = 3 (952956900000 m + 1), m element Z n = 3 (952956900000 m + 1), m element Z n = 2 (1429435350000 m + 1), m element Z e^(i*2pi*(1-((4*714717674999/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^((113 i π)/42883060500000) http://rio2016.5ch.net/test/read.cgi/math/1640355175/189
234: 132人目の素数さん [sage] 2023/12/21(木) 22:52:42.17 ID:KHL6UQJ4 ピタゴラス数を満たすm,nは下記になる(kは任意の整数) 2*(mn)*(2^k-(mn))=(m^4-2^k*m^2)+(n^4-2^k*n^2) http://rio2016.5ch.net/test/read.cgi/math/1640355175/234
300: 132人目の素数さん [sage] 2023/12/30(土) 11:19:50.17 ID:jsoLHdB8 ζ(s)=Σ1/n^s (1-1/2^(s-1))*ζ(s)=(1-1/2^(s-1))*Σ1/n^s=Σ1/n^s-2*Σ1/(2n)^s=Σ(-1)^(n+1)/n^s ζ(s)=1/(1-1/2^(s-1))*Σ(-1)^n/n^s ζ(1/2)=1/(1-√2)*Σ(-1)^(n+1)/√n=1/(1-√2)*(1-1/√2+1/√3-1/√4+・・・・)≒-1.46 http://rio2016.5ch.net/test/read.cgi/math/1640355175/300
449: 132人目の素数さん [sage] 2024/01/23(火) 20:18:13.17 ID:Tn7R0RHf 2*3*5*7*11*13-17^5=-1389827=-719*1933≠113*191=21583 2*3*5*7*11*13*(((2*3*5*7*11*13-17^5)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((-719*1933)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 2*3*5*7*11*13*(((113*191)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=21583=113*191 (-719*1933) mod (2*3*5*7*11*13) =(113*191) (-719*1933) mod 2 = (113*191) mod 2 (-719*1933) mod 3 = (113*191) mod 3 (-719*1933) mod 5 = (113*191) mod 5 (-719*1933) mod 7 = (113*191) mod 7 (-719*1933) mod 11 = (113*191) mod 11 (-719*1933) mod 13 = (113*191) mod 13 2*3*5*7*11*13*(((2*3*5*7*11*13-17^4)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=6569 (-149*359) mod (2*3*5*7*11*13) = (6569*1) 2*3*5*7*11*13*(((-149*359)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=6569=6569*1 2*3*5*7*11*13*(((6569*1)*(1/2+2/3+1/5+6/7+6/11+3/13))mod1)=6569 (-149*359) mod 2= (6569*1) mod 2 (-149*359) mod 3= (6569*1) mod 3 (-149*359) mod 5= (6569*1) mod 5 (-149*359) mod 7= (6569*1) mod 7 (-149*359) mod 11= (6569*1) mod 11 (-149*359) mod 13= (6569*1) mod 13 http://rio2016.5ch.net/test/read.cgi/math/1640355175/449
455: 132人目の素数さん [sage] 2024/01/26(金) 22:04:52.17 ID:Dz6ppHM6 > 2*3*((1/2+2/3)mod1)=1 > 2*3*5*((1/2+1/3+1/5)mod1)=1 > 2*3*5*7*((1/2+1/3+3/5+4/7)mod1)=1 > 2*3*5*7*11*((1/2+2/3+3/5+1/7+1/11)mod1)=1 > 2*3*5*7*11*13*((1/2+2/3+1/5+6/7+6/11+3/13)mod1)=1 > 2*3*5*7*11*13*17*((1/2+1/3+3/5+2/7+1/11+4/13+15/17)mod1)=1 > 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 > 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 > 2*3*5*7*11*13*17*19*23*31*((1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=1 > > 2*3*5*7*11*13*17*19*23*31*(31*(1/2+2/3+4/5+1/7+2/11+4/13+1/17+17/19+14/23+26/31)mod1)=31 > > 2*3*5*7*11*13*17*19*23*31*((1/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19+14*31/23+26*31/31)mod1)=31 > > 2*3*5*7*11*13*17*19*23*31*((31/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19+14*31/23)mod1)=31 > > 2*3*5*7*11*13*17*19*23*((1/2+2*31/3+4*31/5+1*31/7+2*31/11+4*31/13+1*31/17+17*31/19)mod1)=1 > > 2*3*5*7*11*13*17*19*23*((1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=1 > > 2*3*5*7*11*13*17*19*23*(23*(1/2+2/3+4/5+3/7+7/11+7/13+14/17+14/19+20/23)mod1)=23 > > 2*3*5*7*11*13*17*19*((23/2+2*23/3+4*23/5+3*23/7+7*23/11+7*23/13+14*23/17+14*23/19)mod1)=1 > > 2*3*5*7*11*13*17*19*((1/2+1/3+2/5+6/7+7/11+5/13+16/17+18/19)mod1)=1 > > 無限に繰り返すと↓に収束する > 2*3*((1/2+2/3)mod1)=1 > http://rio2016.5ch.net/test/read.cgi/math/1640355175/455
550: 132人目の素数さん [] 2024/08/21(水) 20:39:18.17 ID:V2NPYkUh そして 旦那との間が、まだ居るか?w 内閣は、ほんま感謝してるの楽しいし http://rio2016.5ch.net/test/read.cgi/math/1640355175/550
639: 132人目の素数さん [sage] 2024/10/06(日) 22:20:34.17 ID:fimbC5jl (2*3*5*7*11*13*17*(a/2+b/3+c/5+d/7+e/11+f/13+g/17))^240 mod 510510=1 a,b,c,d,e,f,gが分母の素因数を持たないとき常に下記になる(N=任意の整数) (a/2+b/3+c/5+d/7+e/11+f/13+g/17))^240=N/(2*3*5*7*11*13*17)^239+1/(2*3*5*7*11*13*17)^(240) http://rio2016.5ch.net/test/read.cgi/math/1640355175/639
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
1.396s*