素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
15: 132人目の素数さん [] 2021/12/25(土) 11:34:01.12 ID:0YGYsksh ちなみに、2以外の素数は全て奇数である 2n+1 http://rio2016.5ch.net/test/read.cgi/math/1640355175/15
86: 132人目の素数さん [sage] 2022/11/01(火) 04:06:33.12 ID:ZDb+14YR 素数をあらわす公式達 https://en.wikipedia.org/wiki/Formula_for_primes >>74の公式もそうだけど、実は大して意味がない。 「素数定理」の方が遥に深く重要。 そんなことも分からない「公式バカ」は数学に向いてないね。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/86
271: 132人目の素数さん [sage] 2023/12/25(月) 00:53:21.12 ID:cm14oBhI 11=floor(√(11^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)))) 11=floor(√(30/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)))) 13=floor(√(13^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)))) 13=floor(√(39/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)))) 17=floor(√(17^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)))) 17=floor(√(61/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13)))) P(m+1)=floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k))))) http://rio2016.5ch.net/test/read.cgi/math/1640355175/271
323: 132人目の素数さん [sage] 2024/01/01(月) 02:30:35.12 ID:7BKpZ/zg Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s ↓に代入すると Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0 Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s) x=1/2のときのみ成り立つことを示す http://rio2016.5ch.net/test/read.cgi/math/1640355175/323
344: 132人目の素数さん [sage] 2024/01/03(水) 01:25:56.12 ID:mP/SslTt F(0)=0=0,0,0,0,0,0,0,0,・・・ F(1)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・ F(2)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・ F(3)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・ F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・) (Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s))) =1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s))) m=1のとき (Σ(n=1〜∞)(F(0))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-1*(Σ(n=1〜∞)(-1)^(n-1)*1/(1*n)^(s)))=0 =1/(1-1/1^(s-1))*(((Σ(n=1〜∞)F(0)*1/n^(s)))-1*(Σ(n=1〜∞)F(0)*1/(1*n)^(s)))=0 http://rio2016.5ch.net/test/read.cgi/math/1640355175/344
374: 132人目の素数さん [sage] 2024/01/09(火) 22:53:15.12 ID:lExBawCv (2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく Xに若い数から順に入れて足すと0になる 0=Σe^(i*2pi*(X/(2^a*3^b*5^c)) 1*2*4*6*10 480 +e^(i*2π*1/(2*3*5*7*11)) +e^(i*2π*13^3/(2*3*5*7*11)) +Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}] +Sum[e^(i*2π*prime[7]*prime[k]/(2*3*5*7*11)), {k, 7, 32}] +Sum[e^(i*2π*prime[8]*prime[k]/(2*3*5*7*11)), {k, 8, 30}] +Sum[e^(i*2π*prime[9]*prime[k]/(2*3*5*7*11)), {k, 9, 25}] +Sum[e^(i*2π*prime[10]*prime[k]/(2*3*5*7*11)), {k, 10, 22}] +Sum[e^(i*2π*prime[11]*prime[k]/(2*3*5*7*11)), {k, 11, 21}] +Sum[e^(i*2π*prime[12]*prime[k]/(2*3*5*7*11)), {k, 12, 18}] +Sum[e^(i*2π*prime[13]*prime[k]/(2*3*5*7*11)), {k, 13, 17}] +Sum[e^(i*2π*prime[14]*prime[k]/(2*3*5*7*11)), {k, 14, 16}] +Sum[e^(i*2π*prime[15]*prime[k]/(2*3*5*7*11)), {k, 15, 15}] 338+1+35+26+23+17+13+11+7+5+3+1 e^(i*2π*1/(2*3*5*7*11))+Sum[e^(i*2π*prime[k]/(2*3*5*7*11)), {k, 6, 343}]+e^(i*2π*13^2/(2*3*5*7*11)) http://rio2016.5ch.net/test/read.cgi/math/1640355175/374
391: 132人目の素数さん [sage] 2024/01/13(土) 02:02:48.12 ID:IOv4lBIh 1/(1-1/2^-1/2)*1/(1-1/3^-1/2)*1/(1-1/5^-1/2)*Σ(n=1~25000)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2)=-1.34223 ←25000を∞にして-1.46に近づく 1/(1-1/2)*1/(1-1/3)*1/(1-1/5)*Σ(n=1~100)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(2)=1.6421734 ←100を∞にしてπ^2/6に近づく 1/(1-1/2^2)*1/(1-1/3^2)*1/(1-1/5^2)*Σ(n=1~25)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(3)=1.20275 ←25を∞にして1.20205に近づく Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s)) (1-1/a^(x-1+iy))/(1-1/a^(x+iy))=0 y=i(x-1)+2nπ/ln(a) (1-1/a^(0+i*2nπ/ln(a))/(1-1/a^(1+2nπ/ln(a)))=0 ←nが整数の時満たす。 ζ(s)=ζ(1-s) Π1/(1-1/prime[k]^(-s))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(1-s))=ζ(1-s)=Π1/(1-1/prime[k]^(1-s)) (1-1/a^(-x-iy))/(1-1/a^(1-x-iy))=0 y'=ix+2nπ/ln(a) (1-1/a^(0-i*2nπ/ln(a))/(1-1/a^(1-2nπ/ln(a)))=0 ←nが整数の時満たす。 |y/y'|=1 のときx=1/2 http://rio2016.5ch.net/test/read.cgi/math/1640355175/391
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.021s