素数の規則を見つけたい。。。 (701レス)
前次1-
抽出解除 レス栞

リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
15: 2021/12/25(土)11:34:01.12 ID:0YGYsksh(2/2) AAS
ちなみに、2以外の素数は全て奇数である

2n+1
86: 2022/11/01(火)04:06:33.12 ID:ZDb+14YR(1) AAS
素数をあらわす公式達
外部リンク:en.wikipedia.org

>>74の公式もそうだけど、実は大して意味がない。
「素数定理」の方が遥に深く重要。

そんなことも分からない「公式バカ」は数学に向いてないね。
271
(1): 2023/12/25(月)00:53:21.12 ID:cm14oBhI(6/19) AAS
11=floor(√(11^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7))))
11=floor(√(30/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7))))

13=floor(√(13^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11))))
13=floor(√(39/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11))))

17=floor(√(17^2より小さい素数の個数/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13))))
17=floor(√(61/((1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*(1-1/13))))

P(m+1)=floor(√(P(m+1)^2より小さい素数の個数/(Π(1-1/P(k)))))
323: 2024/01/01(月)02:30:35.12 ID:7BKpZ/zg(3/15) AAS
Σ1/(2n-1)^s-Σ1/(2n)^s=0 ← Σ1/(4n-2)^s=Σ1/(4n)^s

↓に代入すると
Σ1/(4n-3)^s+Σ1/(4n-2)^s+Σ1/(4n-1)^s-3*Σ1/(4n)^s=0

Σ1/(4n-2)^s=1/2×(Σ1/(4n-3)^s+Σ1/(4n-1)^s)
x=1/2のときのみ成り立つことを示す
344: 2024/01/03(水)01:25:56.12 ID:mP/SslTt(7/8) AAS
F(0)=0=0,0,0,0,0,0,0,0,・・・
F(1)=(-1)^(n-1)=1,-1,1-1,1,-1,・・・
F(2)=(-2*cos((n)*2π/3))=1,1,-2,1,1-2,1,1-2,・・・
F(3)=((2*cos((n+2)*π/2))+(-1)^(n+1))=1,1,1,-3,1,1,1,-3,1,1・・・
F(m-1)=1がm-1回連続し、-(m-1)がm回目ごとにでる関数(1,1,1,1,1,1,1,・・・,-(m-1),1,1,1,1,1,・・・-(m-1),1,1,1,1,・・・)

(Σ(n=1〜∞)(F(m-1))*1/n^(s))=1/(1-1/2^(s-1))*(((Σ(n=1〜∞)(-1)^(n-1)*1/n^(s)))-m*(Σ(n=1〜∞)(-1)^(n-1)*1/(mn)^(s)))
=1/(1-1/m^(s-1))*(((Σ(n=1〜∞)F(m-1)*1/n^(s)))-m*(Σ(n=1〜∞)F(m-1)*1/(mn)^(s)))
省3
374: 2024/01/09(火)22:53:15.12 ID:lExBawCv(1/7) AAS
(2^a*3^b*5^c)未満の2,3,5を素因数に持たない数をXとおく
Xに若い数から順に入れて足すと0になる
0=Σe^(i*2pi*(X/(2^a*3^b*5^c))

1*2*4*6*10 480

+e^(i*2π*1/(2*3*5*7*11))
+e^(i*2π*13^3/(2*3*5*7*11))
+Sum[e^(i*2π*prime[6]*prime[k]/(2*3*5*7*11)), {k, 6, 40}]
省11
391: 2024/01/13(土)02:02:48.12 ID:IOv4lBIh(1/9) AAS
1/(1-1/2^-1/2)*1/(1-1/3^-1/2)*1/(1-1/5^-1/2)*Σ(n=1~25000)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(1/2)=-1.34223 ←25000を∞にして-1.46に近づく

1/(1-1/2)*1/(1-1/3)*1/(1-1/5)*Σ(n=1~100)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(2)=1.6421734 ←100を∞にしてπ^2/6に近づく

1/(1-1/2^2)*1/(1-1/3^2)*1/(1-1/5^2)*Σ(n=1~25)(-1)^(n-1)*(1-3*(floor[cos(n*2pi/3)^2]))*(1-5*(floor[cos(n*2pi/5)^2]))/n^(3)=1.20275 ←25を∞にして1.20205に近づく

Π1/(1-1/prime[k]^(s-1))*(Σ(n=1~∞)(-1)^(n-1)Π(1-prime[k+1]*(floor[cos(n*2pi/prime[k+1])^2]))/n^(s))=ζ(s)=Π1/(1-1/prime[k]^(s))
(1-1/a^(x-1+iy))/(1-1/a^(x+iy))=0
y=i(x-1)+2nπ/ln(a)   
(1-1/a^(0+i*2nπ/ln(a))/(1-1/a^(1+2nπ/ln(a)))=0 ←nが整数の時満たす。
省6
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.027s