素数の規則を見つけたい。。。 (701レス)
素数の規則を見つけたい。。。 http://rio2016.5ch.net/test/read.cgi/math/1640355175/
上
下
前
次
1-
新
通常表示
512バイト分割
レス栞
201: 132人目の素数さん [sage] 2023/11/26(日) 00:35:25.83 ID:5ylX1SN5 ↓3次元では書けないベクトル和(((x+y+i^m*z)*(x+y-i^m*z)*(x-y+i^m*z)*(x-y-i^m*z)) mが3以上のベクトル和をかけない) √(x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4)=√(((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z))) √(x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4)=√(((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z))) cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^
3+e/11^3)) > cos(2pi*(13^2/2310^3)) a = 4 n_1, b = 9 n_2, c = 125 n_3, d = 343 n_4 + 83, e = 1331 n_5 + 205, a = 4 n_1, b = 9 n_2, c = 125 n_3 + 53, d = 7 (49 n_4 + 29), e = 1331 n_5 + 1235, cos(2pi*((2*4+1)/2^3-(3*9+1)/3^3-53/5^3-7*29/7^3+1235/11^3))=cos((91 π)/6163195500) ←7*29が7をもつため非素数 a = 4 n_1, b = 3 (3 n_2 + 1), c = 125 n_3 + 77, d = 343 n_4 + 163, e = 1331 n_5 + 448, cos(2pi*((2*4+1)/2^3-(3*3+1)/3^3-77/5^3-163/7^3+448/11^3))=cos((19 π)/6163195500) a = 4 n_1, b = 3 (3 n_2 +
2), c = 125 n_3 + 29, d = 343 n_4 + 243, e = 1331 n_5 + 691, cos(2pi*((2*4+1)/2^3-(3*6+1)/3^3-29/5^3-243/7^3+691/11^3))=cos((163 π)/6163195500) a = 4 n_1, b = 3 (3 n_2 + 2), c = 125 n_3 + 101, d = 343 n_4 + 123, e = 1331 n_5 + 992, cos(2pi*((2*4+1)/2^3-(3*6+1)/3^3-101/5^3-123/7^3+992/11^3))=cos((53 π)/6163195500) http://rio2016.5ch.net/test/read.cgi/math/1640355175/201
メモ帳
(0/65535文字)
上
下
前
次
1-
新
書
関
写
板
覧
索
設
栞
歴
あと 500 レスあります
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.009s