素数の規則を見つけたい。。。 (701レス)
1-

120: 2023/02/01(水)23:01 ID:i+yfCuZE(1) AAS
2^a*3^b*5^c*(1+1/2^a+1/3^b+1/5^c) ←2,3,5で割り切れない値が生成される
この値が7^2より小さいとき生成される値は素数

P(n)がn番目の素数の時
1とn番目までの素数のみの逆数和=1+1/2^s+1/3^s+1/5^s+・・・1/P(n)^s
に2^s*3^s*・・・*P(n)^sをかけ、生成される値がP(n+1)^2より小さいとき素数になる
(1と素数のみのゼータ関数)が0に近づくとき無限この素数積をかけても有限の値になる
無限この素数積*(1と素数のみのゼータ関数) → ∞×0=素数 
121: 2023/02/01(水)23:56 ID:8ufOKEyr(1) AAS
ビックバン宇宙の菅数論?
122: 2023/02/20(月)00:50 ID:x6Rhkjrn(1/2) AAS
((2*3*5*7)*(1+1/2+1/3+1/5+1/7)) mod (2*3*5) = 7
((2*3*5*7)*(1+1/2+1/3+1/5+1/7)) =15* (2*3*5) + 0.23*(2*3*5)

((2*3*5*7)*(1+1/2+1/3+1/5+1/7))-15* (2*3*5) = 0.23*(2*3*5)
(2*3*5*7)+(2*3*5)*(1-15)+(2*5*7)+(3*5*7)+(2*3*7) = 0.23*(2*3*5)=7
(2*3*5*7)+(2*3*5)*(-2*7)+(2*5*7)+(3*5*7)+(2*3*7)=7*1 ←7がくくりだせるため7で割れる

((2*3*5*7^d)*(1+1/2+1/3+1/5+2^a*3^b*5^c/7^d)) =A* (2*3*5) + B*(2*3*5)

((2*3*5*7^3)*(1+1/2+1/3+1/5+2^3*3^2*5^2/7^3))mod (2*3*5) =13
省4
123: 2023/02/20(月)01:04 ID:x6Rhkjrn(2/2) AAS
7^3*61-2^3*3^29*2*3*5=43
7^3*61-5*139*2*3*5=73
7^3*61-2*347*2*3*5=103  ← 2,3,5,7で割れない かつ11^2よりちいさいため素数
7^3*61-3^2*7*11*2*3*5=133 ←7で割れる
124: 2023/03/11(土)12:30 ID:61NYUI3c(1/3) AAS
ζ(s)=1と素数のみのゼータ関数+(1/2^s+1/2^2s+・・・)*(1+1/3^s+1/3^2s+1/3^3s+・・・)*・・・+(1/3^s+1/3^2s+1/3^3s+・・・)*(1+1/5^s+1/5^2s+1/5^3s+・・・)・・・+
ζ(s)=(1+1/2^s+1/3^s+1/5^s+・・・)+(1/2^s+・・・)(1+1/3^s+・・・)+(1/3^s+・・・)(1+1/5^s+・・・)
(1+1/2^s+1/2^2s+・・・)=1/2^s*(1/2^s+1/2^2s+・・・)=1/(1-1/2^s)
ζ(s)-ζ(s)*(1/2^s)-ζ(s)*(1-1/2^s)*(1/3^s)-ζ(s)*(1-1/2^s)*(1-1/3^s)*(1/5^s)-・・・=1と素数のみのゼータ関数

ζ(s)*{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・}=1と素数のみのゼータ関数

1と素数のみのゼロ点はζ(s)=0のときまたは{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・}=0のとき
125: 2023/03/11(土)20:04 ID:61NYUI3c(2/3) AAS
ζ(s)=1+(1/2^s)*ζ(s)+(1-1/2^s)*1/3^s*ζ(s)+(1-1/2^s)*(1-1/3^s)*1/5^s*ζ(s)+・・・+Π(1-1/P(k)^s)*1/P(k+1)^s*ζ(s)

ζ(s)-{(1/2^s)*ζ(s)+(1-1/2^s)*1/3^s*ζ(s)+(1-1/2^s)*(1-1/3^s)*1/5^s*ζ(s)+・・・+Π(1-1/P(k)^s)*1/P(k+1)^s*ζ(s)}=1

ζ(s)*{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-・・・Π(1-1/P(k)^s)*1/P(k+1)^s}=1
0*∞=1
{1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-・・・Π(1-1/P(k)^s)*1/P(k+1)^s} → ∞
126: 2023/03/11(土)21:45 ID:61NYUI3c(3/3) AAS
|ζ(s)|=1/√(1+1/2^2x-2*cos(y*ln2)/2^x)*1/√(1+1/3^2x-2*cos(y*ln3)/3^x)*1/√(1+1/5^2x-2*cos(y*ln5)/5^x)*・・・*1/√(1+1/P(k)^2x-2*cos(y*lnP(k))/P(k)^x=0
√(1+1/2^2x-2*cos(y*ln2)/2^x)*√(1+1/3^2x-2*cos(y*ln3)/3^x)*√(1+1/5^2x-2*cos(y*ln5)/5^x)*・・・*√(1+1/P(k)^2x-2*cos(y*lnP(k))/P(k)^x=(1+A)*(1-B)=∞
(1/2^2x+1/3^2x+1/5^2x+・・・)-2*(cos(y*ln2)/2^x+cos(y*ln3)/3^x+cos(y*ln5)/5^x+・・・)→∞
2*(cos(y*ln2)/2^x+cos(y*ln3)/3^x+cos(y*ln5)/5^x+・・・)→0
127: 2023/04/03(月)06:57 ID:yDIDmN/Q(1) AAS
数セミのζ氏の記事は衝撃的だった
128: 2023/04/07(金)15:00 ID:IzOrW2wf(1) AAS
ζ(s)=1+1/2^s*ζ(s)+(1-1/2^s)*1/3^s*ζ(s)+(1-1/2^s)*(1-1/3^s)*1/5^s*ζ(s)+・・・
ζ(s)=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π(1-1/p(k)^s)*1/p(n)^s)
129: 2023/04/08(土)11:54 ID:9QD/txfu(1/2) AAS
1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s)

1*2*(1-1/2)=1
2*3*(1-1/2-(1-1/2)*1/3)=2
3*5*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5)=2^2
5*7*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5-(1-1/2)*(1-1/3)*(1-1/5)*1/7)=2^3
7*11*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5-(1-1/2)*(1-1/3)*(1-1/5)*1/7-(1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*1/11)=2^4

Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s=2^n/(p(n-1)*p(n))
130: 2023/04/08(土)14:33 ID:9QD/txfu(2/2) AAS
13*11*(1-1/2-(1-1/2)*1/3-(1-1/2)*(1-1/3)*1/5-(1-1/2)*(1-1/3)*(1-1/5)*1/7-(1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*1/11+(1-1/2)*(1-1/3)*(1-1/5)*(1-1/7)*(1-1/11)*1/13)=2^5
131: 2023/04/09(日)00:22 ID:bvL7IRHN(1) AAS
13*17*(1-1/2-1/6-1/15+4/105-8/385+(80/385*1/13)-80/385*12/13*1/17)≒63=2^6
17*19*(1-1/2-1/6+1/15-4/105+8/385+(80/385*1/13)+80/385*12/13*1/17-80/385*12/13*16/17*1/19)≒129≒2^7

ΣΠ(1-1/p(k)^s)*1/p(n)^s)≒2^n/(p(n)*p(n-1))
132: 2023/04/12(水)01:10 ID:qqmT0g6P(1/7) AAS
1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s)
5以上の整数が無限大の時
1+1/2^s+1/3^s+1/4^s+1/∞^s+1/6^s+1/∞^s+1/8^s+1/9^s+1/∞^s・・・1/n^s=1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/∞^s-(1-1/2^s)*(1-1/3^s)*(1-1/∞^s)*1/∞^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s)
1+1/2^s+1/3^s+1/6^s+1/8^s+1/9^s+1/12^s・・・+1/(2^a*3^b)^s=1/(1-1/2^s-(1-1/2^s)*1/3^s)
2と3の因数のみでできたゼータ関数は1/(1-1/2^s-(1-1/2^s)*1/3^s)になる

Σ1/(2^a*3^b)=1/(1-1/2-(1-1/2)*1/3)
sが1のとき3に収束する
省1
133: 2023/04/12(水)01:19 ID:qqmT0g6P(2/7) AAS
1+1/2^s-1/3^s+1/4^s+1/∞^s-1/6^s+1/∞^s+1/8^s+1/9^s+1/∞^s-1/12^s・・・1/n^s=1/(1-1/2^s+(1-1/2^s)*1/3^s-(1-1/2^s)*(1+1/3^s)*1/∞^s-(1-1/2^s)*(1+1/3^s)*(1-1/∞^s)*1/∞^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s)

2と-3の因数のみでできたゼータ関数は1/(1-1/2^s+(1-1/2^s)*1/3^s)になる
Σ1/(2^a*(-3)^b)=1/(1-1/2+(1-1/2)*1/3)=1.5
aとbは0以上の整数
sが1のとき1.5に収束する
1+1/2-1/3+1/4-1/6+1/8+1/9-1/12+1/18-1/24-1/27+1/32+1/36-1/48+1/64+1/72+1/81-1/96-1/108+・・・→1/1/(1-1/2+(1-1/2)*1/3)=1.5
134: 2023/04/12(水)01:28 ID:qqmT0g6P(3/7) AAS
1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+1/18+1/24+1/27+1/32+1/36+1/48+1/64+1/72+1/81+1/96+1/108+・・・→1/1/(1-1/2-(1-1/2)*1/3)=3
1+1/2-1/3+1/4-1/6+1/8+1/9-1/12+1/18-1/24-1/27+1/32+1/36-1/48+1/64+1/72+1/81-1/96-1/108+・・・→1/1/(1-1/2+(1-1/2)*1/3)=1.5

Σ1/(2^a*3^2b)=2.25

1+1/2+1/2^2+1/2^3+1/3^2+1/(2*3^2)+1/(2^5)+1/(2^2*3^2)+1/(2^6)+1/(2^3*3^2)+1/(3^4)+・・・→2.25
135: 2023/04/12(水)01:59 ID:qqmT0g6P(4/7) AAS
1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s)

因数が3と7のみのゼータ関数の時
ζ(s)=1/(1-1/3^s-(1-1/3^s)*1/7^s)
1/(1-1/3-(1-1/3)*1/7)=1.75

Σ1/(3^a*7^b)→1.75

1+1/3+1/7+1/3^2+1/(3*7)+1/(3^3)+1/7^2+1/3^4+1/3^5+1/7^3+・・・→1.75
136
(1): 2023/04/12(水)02:05 ID:qqmT0g6P(5/7) AAS
1/(1-1/2^s-(1-1/2^s)*1/3^s-(1-1/2^s)*(1-1/3^s)*1/5^s-(1-1/2^s)*(1-1/3^s)*(1-1/5^s)*1/7^s-・・・-Π[k=1→n-1](1-1/p(k)^s)*1/p(n)^s)

Σ(1/(a^n1*b^n2*c^n3)^s=1/(1-1/a^s-(1-1/a^s)*1/b^s-(1-1/a^s)*(1-1/b^s)*1/c^s)
137: 2023/04/12(水)07:14 ID:ToSsDT4v(1/2) AAS
>>136
左辺における文字の対称性が右辺におけるそれと一致していないね
138
(1): 2023/04/12(水)07:30 ID:ToSsDT4v(2/2) AAS
リーマンゼータのオイラー積表示
ζ(s)=Π_{p:prime} (1-1/p^s)^{-1}
において、素数の集合を部分集合Sに制限すると
Π_{p∈S} (1-1/p^s)^{-1}
になるだけ。

ただし、無限集合のときはRe(s)>1で収束するが
Sが有限集合なら、Re(s)>0 としてよい。
省1
139: 2023/04/12(水)15:16 ID:qqmT0g6P(6/7) AAS
>>138
1/((1-1/2^2)*(1-1/3^2)*(1-1/5^2)*(1-1/7^2)*(1-1/11^2)*(1-1/13^2)*(1-1/17^2))*・・・=π^2/6≒1.64

1/((1-1/2^3)*(1-1/3^3)*(1-1/5^3)*(1-1/7^3)*(1-1/11^3)*(1-1/13^3)*(1-1/17^3))*・・・≒1.21(厳密には不明)

Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0

1/√{(1-(2*cos(yln2)/2^x-1/2^2x))*(1-(2*cos(yln3)/3^x-1/3^2x))*・・・)

Σ1/n^(x+i*y)=(1+(2*cos(yln2)/2^x-1/2^2x)+(2*cos(yln2)/2^x-1/2^2x)^2+(2*cos(yln2)/2^x-1/2^2x)^3+・・・)*(1+(2*cos(yln3)/3^x-1/3^2x)+(2*cos(yln3)/3^x-1/3^2x)^2+・・・)*・・・
省6
140: 2023/04/12(水)18:04 ID:qqmT0g6P(7/7) AAS
Σ2*cos(ylnp(k))/√p(k)=Σ1/p(k)-1
(Σ2*cos(ylnp(k))/√p(k))^2=(Σ1/p(k))^2-2*Σ1/p(k)+1

(Σ2*cos(ylnp(k))/√p(k))^2=4*Σcos(ylnp(k))^2/p(k)+8*?Πcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b)
(Σ1/p(k))^2=Σ1/p(k)^2+2*?Π1/p(a)*p(b))

4*Σcos(ylnp(k))^2/p(k)+8*?Πcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b))+2*Σ1/p(k)=Σ1/p(k)^2+2*?Π1/p(a)*p(b)+1

Σ1/p(k)^2+2*?Π1/p(a)*p(b)+1は有限の値に収束するため
4*Σcos(ylnp(k))^2/p(k)+8*?Πcos(ylnp(a))*cos(ylnp(b))/√(p(a)*p(b))+2*Σ1/p(k)からΣ1/p(k)の項を消す必要がある
141: 2023/04/14(金)01:45 ID:QoHCV6m7(1) AAS
Σ1/n^(x+iy)=1+2^(x+iy)+3^(x+i*y)+・・・=1/√{(1+1/2^(2x)-2*cos(yln2)/2^x)*(1+1/3^(2x)-2*cos(yln3)/3^x)*(1+1/5^(2x)-2*cos(yln5)/5^x)*(1+1/7^(2x)-2*cos(yln7)/7^x)*・・・) →0

非自明なゼロ点の虚部を小さい素数にかけると2πでわった余りがπに近づく

ln2*14.1347 mod 2π≒1.1186π
ln2*21.022 mod 2π≒0.638π
ln2*25.010 mod 2π≒1.518π
ln2*30.424 mod 2π≒0.712π
(ln2*32.935 mod 2π)/π≒1.266π
省18
142: 2023/05/21(日)01:40 ID:1J9WtyC7(1/4) AAS
2*3*5*7*11*13*17*19*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19) mod 30 =17
2*3*5*7*11*13*17*19*23*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23) mod 30 =1
2*3*5*7*11*13*17*19*23*29*31*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31) mod 30 =29
2*3*5*7*11*13*17*19*23*29*31*37*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37) mod 30 =23
2*3*5*7*11*13*17*19*23*29*31*37*41*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41) mod 30=13
2*3*5*7*11*13*17*19*23*29*31*37*41*43*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43) mod 30 =19
2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1-1/2-1/3-1/5-1/7*1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47) mod 30 =23
143: 2023/05/21(日)01:51 ID:1J9WtyC7(2/4) AAS
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47)) mod 210 =67
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53)) mod 210 =191
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59)) mod 210 =139
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61)) mod 210 =79
144: 2023/05/21(日)01:55 ID:1J9WtyC7(3/4) AAS
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*(1-1/2-1/3-1/5-1/7-1/11*1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71)) mod 210 =113
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71)) mod 2310 =1583
145: 2023/05/21(日)01:59 ID:1J9WtyC7(4/4) AAS
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73)) mod 2310 =59
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*79*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73*1/79)) mod 2310 =41
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*79*83*(1-1/2-1/3-1/5-1/7-1/11-1/13*1/17*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73*1/79*1/83)) mod 2310 =1093
-(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53*59*61*67*71*73*79*83*89*(1-1/2-1/3-1/5-1/7-1/17-1/11*1/13*1/19*1/23*1/29*1/31*1/37*1/41*1/43*1/47*1/53*1/59*1/61*1/67*1/71*1/73*1/79*1/83*1/89)) mod 3570 =887
146: 2023/05/21(日)10:13 ID:3IunxhIN(1) AAS
素数定理はリーマンζ関数が実部が1の複素引数において零点を持たないということから
導かれるが、その証明にいたるには長い年月が必要だったという。
147: 2023/05/22(月)12:41 ID:1iNd55ue(1/3) AAS
まず、円周の長さを求めるためには、円の半径が必要です。半径を $r$ とすると、円周の長さ $C$ は以下のようになります。

$$C = 2 \pi r$$

半径 $r$ に対してセンチメートルやメートル単位で印をつけた円を用意すると、半径 $r$ の長さに対して $2 \pi r$ の長さの円周ができます。この円周上にある素数に当たる数字とその角度度数を計算するには、まずは円周上の一辺の長さと角度度数の関係を求める必要があります。

円周上に等間隔で $n$ 個の点を取ると、各点とその隣の点を結んでできる線分の長さは、円周の長さを $n$ で割ったものとなります。この線分の長さを $l$ とすると、角度 $a$ の弧の長さは、円周の長さ $C$ に対する角度 $a$ の比率で求めることができます。

具体的には、角度 $a$ の弧の長さ $L$ は以下のようになります。
省2
148: 2023/05/22(月)12:42 ID:1iNd55ue(2/3) AAS
素数11に対応する角度を求めるには、円周上に均等に分布した $n$ 個の点のうち、11番目の点の角度を求める必要があります。ただし、円周上に均等に分布する $n$ 個の点を求めるには、何らかのアルゴリズムを使用する必要があります。

ここでは、半径が1の円に対して、円周上に均等に分布した 360 個の点を使用することにします。この場合、各点の角度は $360^\circ / 360 = 1^\circ$ であり、11番目の点の角度は $11 \times 1^\circ = 11^\circ$ となります。

また、半径が $r$ の円に対して、同様に均等に分布した $n$ 個の点を使用する場合、各点の角度は $360^\circ / n$ であり、素数 $p$ に対応する角度は $p \times 360^\circ / n$ となります。したがって、円の大きさや素数に応じて、角度を計算することができます。
149: 2023/05/22(月)12:44 ID:1iNd55ue(3/3) AAS
円周と素数と角度には、いくつかの関係や法則が知られています。

1つの例として、素数定理と呼ばれる法則があります。素数定理は、ある正の整数 $x$ 以下の素数の個数 $π(x)$ と、$x$ に十分に近い値 $x/\ln x$ の関係を表すものです。この法則によれば、十分大きな $x$ に対して、素数の個数 $π(x)$ はおよそ $x/\ln x$ に等しくなると予想されます。

また、円周上に均等に分布する素数に関する問題にも興味が持たれています。具体的には、円周上に均等に分布する素数の個数や、その分布パターンに関する研究が行われています。

さらに、円周上に均等に分布する点の角度を求めるためのアルゴリズムとして、円周上の点を等間隔に区切る方法が知られています。この方法により、任意の数の点を円周上に均等に分布させることができます。

これらの関係や法則は、数学の分野である「解析数論」や「幾何学的位相学」などで研究されています。
150: 2023/05/27(土)12:15 ID:OF9d/wxI(1) AAS
e^(i*2π*7*11*13*(1-1/2^3-1/3^2-1/5) )=e^(i*163/180)
e^(i*2π*7*11*13*17*(1-1/2^3-1/3^2-1/5) )=e^(i*109/180)

e^(i*2π*(n+1番目からm番目の素数積)*(1番目からn番目の素数の逆数和))=e^(i*素数/180)

(1番目からn番目の素数の逆数和)/(n+1番目からm番目の素数積)の商が
(n+1番目からm番目の素数積)の素数を素因数に持たないとき
また(m+1番目の素数)^2>1番目からn番目の素数積のとき
必ずe^(i*素数/180)になる
151: 2023/05/28(日)02:25 ID:V+woUDG6(1/8) AAS
e^(i*π*7*11*13*(1-1/2^3-1/3^2-1/5) )=e^(i*π*163/360) ←350で割ったあまりのみ見るので等しい
e^(i*π*7*11*13*(1-1/2^3-1/3^2-1/5)/163)≠e^(i*π*1/360) ←商も割られるのでイコールにならない
e^(i*π*7*11*13*(1-1/2^3-1/3^2-1/5)/163)=e^(-i*π*31517/58680)
152: 2023/05/28(日)11:01 ID:V+woUDG6(2/8) AAS
e^(i*π*(1-(N-1)!)/N)=e^(i*π*/N)

Nが素数の時
e^(i*π*(1-(N-1)!)/N)=e^(i*π*/N)
Nが非素数の時
e^(i*π*(1-(N-1)!)/N)=-1
153: 2023/05/28(日)11:20 ID:V+woUDG6(3/8) AAS
e^(i*π*(1-(N-1)!/N))=e^(i*π*/N)

Nが素数の時
e^(i*π*(1-(N-1)!/N))=e^(i*π*/N)
Nが非素数の時
e^(i*π*(1-(N-1)!/N))=-1

e^(i*π*(1-(2-1)!/2))=e^(i*π*/2)
e^(i*π*(1-(3-1)!/3))=e^(i*π*/3)
省13
154: 2023/05/28(日)19:44 ID:V+woUDG6(4/8) AAS
e^(i*π*(1/2-(2-1)!/2^2))=e^(i*π*/2^2)
e^(i*π*(1/3-(3-1)!/3^2))=e^(i*π*/3^2)
e^(i*π*(1/5-(5-1)!/5^2))=e^(i*π*/5^2)

Σ(1/P(n)-(1-P(n))!/P(n)^2) mod 2π=π^2/6

e^(i*π*(1/2^2-(2-1)!/2^3))=e^(i*π*/2^3)
e^(i*π*(1/3^2-(3-1)!/3^3))=e^(i*π*/3^3)
e^(i*π*(1/5^2-(5-1)!/5^3))=e^(i*π*/5^3)
省2
155: 2023/05/28(日)20:36 ID:V+woUDG6(5/8) AAS
e^(i*π*((N-1)/N*(1-(N-1)!/N-1/N)+(1/N-(N-1)!/N^2)))=e^(i*π/N^2)

e^(i*π*((2-1)/2*(1-(2-1)!/2-1/2)+(1/2-(2-1)!/2^2)))=e^(i*π/2^2)
e^(i*π*((3-1)/3*(1-(3-1)!/3-1/3)+(1/3-(3-1)!/3^2)))=e^(i*π/3^2)
e^(i*π*((5-1)/5*(1-(5-1)!/5-1/5)+(1/5-(5-1)!/5^2)))=e^(i*π/5^2)

Σ((P(n)-1)/P(n)*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)-(P(n)-1)!/P(n)^2)) mod 2π=π^2/6
156: 2023/05/28(日)20:40 ID:V+woUDG6(6/8) AAS
e^(i*π*((N^2-1)/N^2*(1-(N-1)!/N-1/N)+(1/N^2-(N-1)!/N^3)))=e^(i*π/N^3)

e^(i*π*((2^2-1)/2^2*(1-(2-1)!/2-1/2)+(1/2^2-(2-1)!/2^3)))=e^(i*π/2^3)
e^(i*π*((3^2-1)/3^2*(1-(3-1)!/3-1/3)+(1/3^2-(3-1)!/3^3)))=e^(i*π/3^3)
e^(i*π*((5^2-1)/5^2*(1-(5-1)!/5-1/5)+(1/5^2-(5-1)!/5^3)))=e^(i*π/5^3)

Σ((P(n)^2-1)/P(n)^2*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)^2-(P(n)-1)!/P(n)^3)) mod 2π=Σ1/P(n)^3
157: 2023/05/28(日)20:46 ID:V+woUDG6(7/8) AAS
((P(n)^2-1)/P(n)^2*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)^2-(P(n)-1)!/P(n)^3))=1/P(n)^3 - (Γ(P(n)) + 1)/P(n) + 1
(Σ1/P(n)^3 -Σ (Γ(P(n)) + 1)/P(n) +Σ 1) mod 2π = Σ1/P(n)^3
Σ(1-(Γ(P(n))+1)/P(n)) mod 2π =0

((P(n)^2-1)/P(n)^2*(1-(P(n)-1)!/P(n)-1/P(n))+(1/P(n)^2-(P(n)-1)!/P(n)^3))=-((P(n) - 1)! + 1)/P(n) + 1/P(n)^3 + 1
Σ(1-(P(n)-1)!+1)/P(n)) mod 2π =0
158: 2023/05/28(日)22:08 ID:V+woUDG6(8/8) AAS
N=素数のとき
e^(i*π*(1-((N-1)!+1)/N))=1

N=非素数の時
e^(i*π*(1-((N-1)!+1)/N))=e^(i*π*((N-1)/N))
159: 2023/05/29(月)13:13 ID:OThGd2Z7(1/2) AAS
1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47)) は47以下の素因数で割れない数

1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47)) mod (2*3*5*7*11) =X

Xは13以上の大きさの素因数を持つ可能性がある

1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47))/ (2*3*5*7*11)の商=A

1*2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11+1/(13*17*19*23*29*31*37*41*43*47))-A (2*3*5*7*11)=X
省3
160: 2023/05/29(月)13:14 ID:OThGd2Z7(2/2) AAS
e^(i*π*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i1403π/2310) ←1403 =23*61
e^(i*π*13*17*19*23*29*31*37*41*43*47*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i907π/2310) ←907 =素数

e^(i*π*(13*17*19*23*29*31*37*41*43*47)^2*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(i1367π/2310) ←1367 =素数
e^(i*π*(13*17*19*23*29*31*37*41*43*47)^2*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(i943π/2310) ←943 =23*41

e^(i*π*(13*17*19*23*29*31*37*41*43*47)^3*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(i2017π/2310) ←2017=素数
e^(i*π*(13*17*19*23*29*31*37*41*43*47)^3*(1/2+1/3+1/5+1/7+1/11-1/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i293π/2310) ←293=素数

e^(i*π*(13*17*19*23*29*31*37*41*43*47)^4*(1/2+1/3+1/5+1/7+1/11-0/(13*17*19*23*29*31*37*41*43*47)) )=e^(-i1333π/2310) ←1333=31*43
省3
161: 2023/06/28(水)00:13 ID:27GX6rbZ(1) AAS
(((11*13*17^2) mod 2)/2+((11*13*17^2) mod 3)/3+((11*13*17^2) mod 5)/5+((11*13*17^2) mod 7)/7) mod 1 = 89/210
(((19^3*13^2*17^2) mod 2)/2+((19^3*13^2*17^2) mod 3)/3+((19^3*13^2*17^2) mod 5)/5+((19^3*13^2*17^2) mod 7)/7+((19^3*13^2*17^2) mod 11)/11) mod 1 =2063/2310
(((19^3*13^2*17^2) mod 2)/2+((19^3*13^2*17^2) mod 3)/3+((19^3*13^2*17^2) mod 5)/5+((19^3*13^2*17^2) mod 7)/7+((19^3*13^2*17^2) mod 11)/11) mod 1 =1409/2310

e^(i*a*(1/b+1/c))=e^(i*a/b)*e^(i*a/c)=e^(i*(a mod b)/b)*e^(i*(a mod c)/c)

a*(1/b+1/c) ≠(a mod b)/b(a mod c)/c
162: 2023/07/14(金)12:02 ID:1XN1Q0I4(1/2) AAS
p(n)がn番目の素数の時
e^(i*π*(1/p(1)+1/p(2))) -P(3)^2/(p(1)*p(2))<(1/p(1)+1/p(2)) <P(3)^2/(p(1)*p(2))を満たすとき(1/p(1)+1/p(2)) の分子は素数

e^(i*π*(3/2+3/3^2+16/5^3))=e^(i*π*-29/150)
e^(i*π*(3/2+3/3^2+17/5^3))=e^(i*π*-23/150)
e^(i*π*(3/2+3/3^2+18/5^3))=e^(i*π*-17/150)
e^(i*π*(3/2+3/3^2+19/5^3))=e^(i*π*-11/150)
e^(i*π*(3/2+3/3^2+20/5^3))=e^(i*π*-1/150)
省14
163: 2023/07/14(金)12:31 ID:1XN1Q0I4(2/2) AAS
1/(2*3*5)の刻みにすることで変化量を減らす
e^(i*π*(13/7+1/(2*3*5)))=e^(i*π*-23/750)
e^(i*π*(13/7+7/(2*3*5)))=e^(i*π*19/750)
e^(i*π*(13/7+11/(2*3*5)))=e^(i*π*47/750)
e^(i*π*(13/7+13/(2*3*5)))=e^(i*π*61/750)
e^(i*π*(13/7+17/(2*3*5)))=e^(i*π*89/750)

e^(i*π*(21/11+11/(2*3*5*7)))=e^(i*π*-89/2310)
省15
164
(1): 2023/07/15(土)13:45 ID:VB180XqU(1) AAS
長い式を書き並べている人は、どういった数式処理ソフトを使っているのだろうかなぁ?
165: 2023/07/16(日)21:06 ID:uLo9m6h8(1) AAS
>>164
cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+13^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(337/614889782588491410)
cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+15^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(449/614889782588491410)
cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+17^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(577/614889782588491410)
cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+18^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(647/614889782588491410)
cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+21^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(881/614889782588491410)
cos(((floor(3*5*7*11*13*17*19*23*29*31*37*41*43*47/2)+22^2) /(3*5*7*11*13*17*19*23*29*31*37*41*43*47)-1/2)=cos(967/614889782588491410)
省4
166: 2023/07/17(月)12:59 ID:nXy+r9PE(1) AAS
おそらく、色んな人の言ってる素数の規則の有無って有効かつ単純な、P=n(f)の方程式の完成のこと言ってるよな。

単純な等比級数は倍数の世界で
櫛からも分かる通り素数は等比級数やひいては合成数の穴として素数が並べられているから
"等比級数ではなさ"で成り立っている素数の並びをなんとか等比級数にしようと試みてることになる。
整数の世界からみたら、素数の並びは整数の規則のメス型なんだよな。
だから無限から数え下げようとか、ゼータ関数みたいな一次関数よりも複雑な関数が必要になる。
167
(1): 2023/07/18(火)02:39 ID:2aiM4OLs(1) AAS
値が正になるときには、すべての素数をしかも素数だけ表す多変数の多項式系というものは
ずいぶん昔から知られているよ。
168: 2023/07/19(水)18:02 ID:lJxdL4Ez(1) AAS
>>167
k+2が素数のときに有効なやつな
規則が無いってのが倍数の規則の単純さの裏にあるとして考えたら
おそらくみんな一次関数的な処理を目指してるんじゃないかと思って
169: 2023/08/27(日)15:28 ID:EQKFmvww(1) AAS
素数の集合は自然数集合Nの部分集合であって、その任意の相異なる要素同士が互いに素である集合の例である。
そのような性質をもつNの部分集合として最大のものだろう。

そこで、「相異なる要素同士が互いに素である」という"関係"を
相異なる要素同士のなんらかの別の"関係"に置き換えることで、
自然数の集合Nの部分集合を(素数の集合の類似品として)作ることは可能か?
170: 2023/09/07(木)00:16 ID:zJAgvXPW(1) AAS
e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/5)/11^3))=e^((23 i π)/139755)
e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+2/7)/11^3))=e^((47 i π)/139755)
e^(i*2pi*(1/2+1/3+1/5+1/7-(floor((1/2+1/3+1/5+1/7)*11^3)+4/7)/11^3))=e^(-(13 i π)/139755)

floor((1/2+1/3+1/5+1/7)*11^n)+4/7)のときfloor((1/2+1/3+1/5+1/7)*11^n)+4/7)は素因数11をn個以上もたない

e^(i*2pi*(1/2+1/3+1/5+1/7+1/11-(floor((1/2+1/3+1/5+1/7+1/11)*13^3)+8/11)/13^3))=e^((19 i π)/230685)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+11/13)/17^3))=e^(-(1171 i π)/4339335)
e^(i*2pi*(1/2+1/3+1/5+1/7+1/11+1/13-(floor((1/2+1/3+1/5+1/7+1/11+1/13)*17^3)+22/13)/17^3))=e^(-(45317 i π)/73768695)
171: 2023/09/10(日)00:00 ID:dI5uwGku(1/3) AAS
cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17))>cos(2pi*(281/510510))を満たすとき
aとbが同時に整数になることがないため
cos(2pi*(1/2+1/3+1/5+1/7+1/11+a/13+b/17)) の分子が素数にならない(19より大きい素数の積になる可能性がある
172: 2023/09/10(日)00:28 ID:dI5uwGku(2/3) AAS
cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510))
255255m+127447<n<255255m+127808
の範囲内で3,5,7,11,13,17で割れない整数を入れればcos(2pi*(1/2+n/(3*5*7*11*13*17))) の分子は素数
cos(2pi*(1/2+127487/(3*5*7*11*13*17)))=cos(2pi*(-19^2/510510))
cos(2pi*(1/2+127808/(3*5*7*11*13*17)))=cos(2pi*(19^2/510510))

((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)は3,5,7,11,13,17で割れない整数
255255m+127447<((1/3-1/5+1/7-1/11+1/13-1/17)*3*5*7*11*13*17)<255255m+127808のとき
省1
173: 2023/09/10(日)20:11 ID:dI5uwGku(3/3) AAS
e^(i*2pi*(A/(2*3*5*7*11*13*17*19)-1/2))=e^(i*2pi*(B)/(3*6*7*11*13*17*19))
Aに素数を入れて出てくるBは3,5,7,11,13,17,19を素因数に持たない

e^(i*2pi*(23/(2*3*5*7*11*13*19)-1/2))=e^(-i*2pi*(2424911)/(3*5*7*11*13*17*19))
e^(i*2pi*(1/2+2424911/(3*5*7*11*13*17)))=e^(-i*2pi*(23)/(2*3*5*7*11*13*17))

e^(i*2pi*(19/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(127627)/255255)
e^(i*2pi*(1/2+127627/(3*5*7*11*13*17)))=e^(-i*2pi*(1)/(2*3*5*7*11*13*17))

e^(i*2pi*(17/(2*3*5*7*11*13*17*19)-1/2))=e^(-i*2pi*(142642)/285285)
省3
174: 2023/09/11(月)01:16 ID:PGAOsNVR(1) AAS
cos(2pi*(1/2+n/(3*5*7*11*13))) >cos(2pi*(17^2/(2*3*5*7*11*13)))
15015 m + 7363<n<15015 m + 7652
√(A+B)=√(3*5*7*11*13)
A-B=17^2
√(A-B)=17
A=7652 B=7363
√(A+B)*√(A^2-B^2)=3*5*7*11*13*17
省5
175: 2023/09/12(火)15:56 ID:L3Ppsu1Q(1) AAS
素数は法則だから式では表せない
176: 2023/09/16(土)11:52 ID:PJtUNqdO(1/4) AAS
素数を式で出すには定義から見つけないと無理だな虚数みたいに
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31=3770006491/200560490130
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37=-61070249963/7420738134810
((-((-((1/5-1/6)-1/7)-1/11)-1/13)+1/17)-1/19-1/23)-1/29+1/31-1/37+1/41=4916857886327/304250263527210
4916857886327=1301*3779291227
4916857886327は2から41の素数で割れないものの43以上の素数の積になる可能性がある

cos(2pi*(1/2+n/(3*5*7*11*13*17))) >cos(2pi*(19^2/510510))
省9
177: 2023/09/16(土)21:42 ID:PJtUNqdO(2/4) AAS
255255m+127447<X=((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)<255255m+127808
255255 m + 127447<3 n + 85085<255255 m + 127808

42362/3<n<14241

cos(2pi*(1/2+X/(3*5*7*11*13*17)))
e^(i*2pi*(1/2+((1/3+n/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) ←nが42362/3<n<14241のとき分子は素数になる

e^(i*2pi*(1/2+((1/3+14130/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(61 i π)/51051)
e^(i*2pi*(1/2+((1/3+14131/(5*7*11*13*17))*3*5*7*11*13*17)/(3*5*7*11*13*17))) =e^(-(23 i π)/19635)
省10
178: 2023/09/16(土)22:15 ID:PJtUNqdO(3/4) AAS
e^(i*2pi*(1/2+X1/(3*5)))
cos(2pi*(1/2+((1/2+n/3)*(2*3))/(3*5)))>cos(2π*49/30)を満たすとき分子は素数
1/2 (15 m - 16)<n<5/2 (3 m - 1)

e^(i*2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))
cos(2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))>cos(2π*121/210)を満たすとき分子は素数

nが1/4 (105 m - 118)<n<1/4 (105 m - 29)をみたしかつ3または7の倍数でないとき分子が素数

e^(i*2pi*(1/2+(1/2+((1/2+n/3)*(2*3))/(3*5))*(2*3*5)/(3*5*7)))
省14
179: 2023/09/16(土)23:51 ID:PJtUNqdO(4/4) AAS
e^(i*2pi*(1/2+(1/2+((1/2+(1/2+n/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11)))
1/8 (1155 m - 809)<n<5/8 (231 m - 128)を満たしかつ3の倍数でないとき分子が素数(非素数が混じる

e^(i*2pi*(1/2+(1/2+((1/2+(1/2-82/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((137 i π)/1155)
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-83/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((121 i π)/1155) ←非素数
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-85/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((89 i π)/1155)
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-86/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((73 i π)/1155)
e^(i*2pi*(1/2+(1/2+((1/2+(1/2-88/3)*(2*3)/(3*5))*(2*3*5))/(3*5*7))*(2*3*5*7)/(3*5*7*11))) =e^((41 i π)/1155)
省9
180: 2023/09/17(日)00:19 ID:NvL18fxN(1/3) AAS
e^(2 i π (2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))

cos(2 π (2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)) < cos(2π*17^2/(2*3*5*7*11*13))

1/16 (15015 m - 9101)<n<1/16 (15015 m - 8812)

e^(2 i π (2/13(2/11 (2/7 (2/5 (-551/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((281 i π)/15015)
e^(2 i π (2/13(2/11 (2/7 (2/5 (-553/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((217 i π)/15015) ←非素数
e^(2 i π (2/13(2/11 (2/7 (2/5 (-554/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((185 i π)/15015) ←非素数
e^(2 i π (2/13(2/11 (2/7 (2/5 (-556/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2))=e^((121 i π)/15015) ←非素数
省8
181: 2023/09/17(日)00:45 ID:NvL18fxN(2/3) AAS
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))
cos(2 π (2/17(2/13(2/11 (2/7 (2/5 (n/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2)) >cos(2π*19^2/(210*11*13*17))
1/32 (255255 m - 145721)<n<5/32 (51051 m - 29072)

e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3433/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((283 i π)/255255)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4546/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((137 i π)/255255)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (3430/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((91 i π)/255255)
e^(2 i π (2/17(2/13(2/11 (2/7 (2/5 (-4547/3 + 1/2) + 1/2) + 1/2) + 1/2)+1/2)+1/2))=e^((73 i π)/255255)
省3
182: 2023/09/17(日)00:49 ID:NvL18fxN(3/3) AAS
連続する素数の差分は2^nと2^(n-1)が交互に来る
73 +2^4=89
89+2^3=97
97+2^4=113
183: 2023/09/25(月)18:20 ID:nXDkmK9h(1) AAS
~~~-y(  -)^^) ブチュッ
184: 2023/10/13(金)01:05 ID:mFgz5jJo(1) AAS
e^(i*2pi*(1-((1-n/(2*3))*2*3 mod 6)/(2*3*5)))

e^(i*2pi*(1-(1-((1-n/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))

e^(i*2pi*(1-(1-((1-5/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*7/105)
e^(i*2pi*(1-(1-((1-7/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*5/105)
e^(i*2pi*(1-(1-((1-11/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*7/105)
e^(i*2pi*(1-(1-((1-13/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7))) =e^((i π)*5/105)
e^(i*2pi*(1-(1-((1-17/(2*3))*2*3 mod 6)/(2*3*5))mod30/(2*3*5*7)))=e^((i π)*7/105)
省4
185: 2023/10/22(日)11:17 ID:1rLOY4nu(1/11) AAS
cos(2pi*(1-(1-(1-n/(2*3))*2*3)/(2*3)^5)) > cos(2pi*(25/(2*3)^5))
n = 7776 m, m element Z
n = 27 (288 m + 1), m element Z
n = 24 (324 m + 1), m element Z
n = 18 (432 m + 1), m element Z
n = 18 (432 m + 431), m element Z

e^(i*2pi*(1-(1-(1-27/(2*3))*2*3)/(2*3)^5))=e^(-(11 i π)/1944)
省3
186: 2023/10/22(日)11:32 ID:1rLOY4nu(2/11) AAS
cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3))

n = 36 m, m element Z
n = 4 (9 m + 8), m element Z
n = 3 (12 m + 1), m element Z
n = 3 (12 m + 11), m element Z
n = 2 (18 m + 1), m element Z

e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108)
省3
187: 2023/10/22(日)11:32 ID:1rLOY4nu(3/11) AAS
cos(2pi*(1-((n+1/(2*3))*2*3)/(2*3)^3)) > cos(2pi*(25/(2*3)^3))

n = 36 m, m element Z
n = 4 (9 m + 8), m element Z
n = 3 (12 m + 1), m element Z
n = 3 (12 m + 11), m element Z
n = 2 (18 m + 1), m element Z

e^(i*2pi*(1-((32+1/(2*3))*2*3)/(2*3)^3)) =e^((23 i π)/108)
省3
188: 2023/10/22(日)11:35 ID:1rLOY4nu(4/11) AAS
cos(2pi*(1-((n+1/(2*3*5))*2*3*5)/(2*3*5)^3)) > cos(2pi*(49/(2*3*5)^3))

n = 900 m, m element Z
n = 900 m + 1, m element Z
n = 900 m + 899, m element Z

e^(i*2pi*(1-((1+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^(-(31 i π)/13500)
e^(i*2pi*(1-((899+1/(2*3*5))*2*3*5)/(2*3*5)^3)) =e^((29 i π)/13500)
189: 2023/10/22(日)11:39 ID:1rLOY4nu(5/11) AAS
cos(2pi*(1-((n/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6)) > cos(2pi*(121/(2*3*5*7)^6))

n = 2858870700000 m, m element Z
n = 4 (714717675000 m + 714717674999), m element Z
n = 3 (952956900000 m + 1), m element Z
n = 3 (952956900000 m + 1), m element Z
n = 2 (1429435350000 m + 1), m element Z

e^(i*2pi*(1-((4*714717674999/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^((113 i π)/42883060500000)
190: 2023/10/22(日)11:45 ID:1rLOY4nu(6/11) AAS
e^(i*2pi*(1-((3/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(97 i π)/42883060500000)
e^(i*2pi*(1-((2/7+1/(2*3*5))*2*3*5*7)/(2*3*5*7)^6))=e^(-(67 i π)/42883060500000)

cos(2pi*(1-((n/(11*3)+1/(2*5*7))*2*3*5*7*11)/(2*3*5*7*11)^6)) > cos(2pi*(169/(2*3*5*7*11)^6))

n = 2170570215498300000 m, m element Z
n = 2 (1085285107749150000 m + 1085285107749149999), m element Z
n = 2170570215498300000 m + 1, m element Z
n = 2170570215498300000 m + 2170570215498299999, m element Z
省3
191: 2023/10/22(日)11:53 ID:1rLOY4nu(7/11) AAS
cos(2pi*(1-((n/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7))

n = 104874047791504330586247000000 m, m element Z
n = 2 (52437023895752165293123500000 m + 52437023895752165293123499999), m element Z
n = 104874047791504330586247000000 m + 104874047791504330586246999999, m element Z

e^(i*2pi*(1-((52437023895752165293123499999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((277 i π)/11011775018107954711555935000000)
e^(i*2pi*(1-((104874047791504330586246999999/(13*11)+1/(2*5*7*3))*2*3*5*7*11*13)/(2*3*5*7*11*13)^7)) =e^((67 i π)/11011775018107954711555935000000)
192: 2023/10/22(日)11:58 ID:1rLOY4nu(8/11) AAS
cos(2pi*(1-((n/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) > cos(2pi*(289/(2*3*5*7*11*13)^7))

n = 98 (1070143344811268679451500000 m + 1070143344811268679451499999), m element Z
n = 104874047791504330586247000000 m + 104874047791504330586246999903, m element Z

e^(i*2pi*(1-((98*1070143344811268679451499999/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^((131 i π)/11011775018107954711555935000000)
e^(i*2pi*(1-((104874047791504330586246999903/(13*11)^2+1/(2*5*7*3))*2*3*5*7*11^2*13^2)/(2*3*5*7*11*13)^7)) =e^(-(79 i π)/11011775018107954711555935000000)
193: 2023/10/22(日)14:24 ID:1rLOY4nu(9/11) AAS
cos(2pi*(1-((n/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) > cos(2pi*(23^2/(2*3*5*7*11*13*17*19)^7))

n = 399 (96407937365467087673718025140163334691000000 m + 28140716575350032665769627724873739650774217), m element Z
n = 8 (4808345876102670997726686503865646317713625000 m + 1403518239195582879205260182778077765082364073), m element Z
n = 5 (7693353401764273596362698406185034108341800000 m + 2245629182712932606728416292444924424131782517), m element Z
n = 2 (19233383504410683990906746015462585270854500000 m + 5614072956782331516821040731112311060329456291), m element Z
n = 38466767008821367981813492030925170541709000000 m + 11228145913564663033642081462224622120658912581, m element Z

e^(i*2pi*(1-((8*1403518239195582879205260182778077765082364073/(13*11*17*19)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19)^11)/(2*3*5*7*11*13*17*19)^7)) =e^(-(229 i π)/4039010535926243638090416663247142906879445000000)
省3
194: 2023/10/22(日)14:35 ID:1rLOY4nu(10/11) AAS
cos(2pi*(1-((n/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) > cos(2pi*(29^2/(2*3*5*7*11*13*17*19*23)^7))

n = 864 (151588688860480401830821308882900152330122196839031250 m + 57736288309081718076562795675036302431140590123061457), m element Z
n = 350 (374207506215585906233798888213787804609215937339780000 m + 142526151711561726909000729894946758001444199618071711), m element Z
n = 69 (1898154017035580683794632041664141037872834464767000000 m + 722958740565892817654351528452628482616021302410508679), m element Z
n = 15 (8731508478363671145455307391655048774215038537928200000 m + 3325610206603106961210017030882091020033697991088339923), m element Z
n = 4 (32743156793863766795457402718706432903306394517230750000 m + 12471038274761651104537563865807841325126367466581274711), m element Z

e^(i*2pi*(1-((864*57736288309081718076562795675036302431140590123061457/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^(-(83 i π)/13752125853422782054092109141856701819388685697236915000000)
省3
195: 2023/10/22(日)14:35 ID:1rLOY4nu(11/11) AAS
e^(i*2pi*(1-((4*12471038274761651104537563865807841325126367466581274711/(13*11*17*19*23)^11+1/(2*5*7*3))*2*3*5*7*(11*13*17*19*23)^11)/(2*3*5*7*11*13*17*19*23)^7)) =e^((757 i π)/13752125853422782054092109141856701819388685697236915000000)
P(k)がk番目の素数の時
cos(2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) > cos(2pi*(P(k+1)^2/(2からP(k)の積)^7))
をみたす整数nがあるとき
e^(i*2pi*(1-((n/(11からP(k)の積)^11+1/(2*5*7*3))*2*3*5*7*(11からP(k)の積)^11)/(2からP(k)の積)^7)) の指数の分子はP(k+1)^2未満の素数
196: 2023/10/29(日)11:38 ID:MYhVftt0(1) AAS
私からの挑戦状
君は、無事、素数の謎が解けるか

暗号

ノート
素数
0Σ
金とドイツ音楽家
省1
197: 2023/10/30(月)08:46 ID:uOew3Zmo(1/2) AAS
解けた人そこそこいるみたいですね
解けない人の為にヒント
ノートは『場所』を示します
198: 2023/10/30(月)12:36 ID:uOew3Zmo(2/2) AAS
解けた人がラストヒント出してるようですね

暗号の追加で

270
199: 2023/11/18(土)02:12 ID:ukn8BQQE(1) AAS
cos(2pi*(1-(((2n+1)/2^x-1/(3*5*7))*105*2^x)/(2*3*5*7)^3)) > cos(2pi*(11^2/210^3))

n = 44100 m
n = 44100 m + 44099

e^(i*2pi*(1-(((2*44100+1)/2^3-1/(3*5*7))*210*2^2)/(2*3*5*7)^3))=e^(-(97 i π)/4630500)
e^(i*2pi*(1-(((2*44100+1)/2^4-1/(3*5*7))*105*2^4)/(2*3*5*7)^3))=e^(-(89 i π)/4630500)
e^(i*2pi*(1-(((2*44100+1)/2^5-1/(3*5*7))*105*2^5)/(2*3*5*7)^3))=e^(-(73 i π)/4630500)
e^(i*2pi*(1-(((2*44100+1)/2^6-1/(3*5*7))*105*2^6)/(2*3*5*7)^3))=e^(-(41 i π)/4630500)
省4
200: 2023/11/26(日)00:24 ID:5ylX1SN5(1/3) AAS
x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4=√((x+y)^2+z^2)^2*√((x-y)^2+z^2)^2*e^(i*arcsin(z/(x+y)))*e^(i*arcsin(-z/(x+y)))*e^(i*arcsin(+z/(x-y)))*e^(i*arcsin(-z/(x-y)))
x^4 - 2 x^2 y^2 + 2 x^2 z^2 + y^4 + 2 y^2 z^2 + z^4=((x+y+i^(2n+1)*z)*(x+y-i^(2n+1)*z)*(x-y+i^(2n+1)*z)*(x-y-i^(2n+1)*z))

x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4=((x+y+z)*(x+y-z)*(x-y+z)*(x-y-z))*e^(i*arcsin(iz/(x+y)))*e^(i*arcsin(-iz/(x+y)))*e^(i*arcsin(+iz/(x-y)))*e^(i*arcsin(-iz/(x-y)))
x^4 - 2 x^2 y^2 - 2 x^2 z^2 + y^4 - 2 y^2 z^2 + z^4=((x+y+i^2n*z)*(x+y-i^2n*z)*(x-y+i^2n*z)*(x-y-i^2n*z)) 

x^12 - 2 x^6 y^6 - 2 x^6 z^6 + y^12 - 2 y^6 z^6 + z^12=((x^3+y^3+i^2*z^3)*(x^3+y^3-i^2*z^3)*(x^3-y^3+i^2*z^3)*(x^3-y^3-i^2*z^3))=0
x^12 - 2 x^6 y^6 - 2 x^6 z^6 + y^12 - 2 y^6 z^6 + z^12≠0 

cos(2pi*((2*a+1)/2^3-(3*b+1)/3^3-c/5^3-d/7^3)) > cos(2pi*(11^2/210^3))
省5
1-
あと 501 レスあります
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.026s