[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
67
(7): 2020/07/31(金)11:40 ID:Trt2z5f1(3/7) AAS
>>65 補足

確率論で問題になる「確率測度として成り立っていない」ケースに二つある

1.一つは、時枝記事にあるような、ヴィタリ集合的なもの
2.もう一つは、非正則分布になるもの。つまり、全事象の積分あるいは和が、無限大に発散する分布になるとき
 このとき、全事象の確率は1であるというコルモゴロフの確率の公理に反しています
3.補足すれば、積分がある有限Mになれば、Mで割って、M→1とできて、各事象は1/Mとかにできます
 ところが、M→∞なら、1/M→0ですから、0をいくら集めても、積分しても、全事象を1に出来ないのです(矛盾と考えることもできる)
省14
68
(4): 2020/07/31(金)12:03 ID:Trt2z5f1(4/7) AAS
>>67 補足の補足

さらに補足します

1.時枝では、決定番号が、非正則な分布になります
 つまり、決定番号は自然数ですが、数列が可算無限という設定ですので
 決定番号は自然数N全体を渡ります。これが、問題です
2.例えば、宝くじでいえば、発行枚数M枚で、番号を1〜M番までとして
 一等賞1枚、二等賞を10枚とします。発行枚数Mが有限なら、確率的取り扱いができます
省7
71: 2020/07/31(金)13:18 ID:Trt2z5f1(7/7) AAS
>>28より再録)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
(抜粋)
answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏
・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.
(引用終り)
省11
86
(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/01(土)14:19 ID:4zrQNSRp(2/3) AAS
>>68-69
(引用開始)
2.例えば、宝くじでいえば、発行枚数M枚で、番号を1〜M番までとして
 一等賞1枚、二等賞を10枚とします。発行枚数Mが有限なら、確率的取り扱いができます
3.ところが、M→∞とすると、「確率測度として成り立っていない」ことになります
 つまり、無限枚発行したら、当る確率は0。本来、二等賞は、一等賞の10倍の確率で当たるはず
 ところが、1/10という計算が正当化されません。なぜなら、二等賞も、一等賞も、当たる確率0ですから
省22
92
(9): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/02(日)16:49 ID:NrBYtRST(2/8) AAS
>>90 補足

時枝記事(>>7 ご参照)では
決定番号dなるものを使う

1.決定番号dの範囲は、有限では収まらない。1〜∞ を渡る
2.時枝のキモは、ある有限のDをうまく選ぶと、確率99/100で、D >= d とできるというもの
3.もし、決定番号dが、正規分布のように、dの大きなところで、早く減衰して、d→∞ で その頻度が0になる場合は、正則分布になり、確率計算は正当化できる
4.一方、時枝記事の決定番号dは、減衰しない。だから、非正則分布になり、確率測度として正当化できず、確率計算に使えない(∵確率の和を1に出来ないなど)
省16
106
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/03(月)07:34 ID:duI4lbde(1) AAS
>>102 補足
>もし、-1 ちょうどか、大きいなら、積分は発散し、非正則な分布になって、確率計算はできません
>(ご存知、ベキ数が-1では、その無限和は(あるいは積分は)、発散します(下記、高校数学の美しい物語 ご参照))
>ベキ数が-1 より小さい場合にのみ、積分は収束し、確率計算が可能になります。

時枝の決定番号は、”ベキ数が-1 より小さい”どころか、負べきでさえありません
”ベキ数が正”です
積分(又は和)は発散し、非正則な分布になって、確率計算はできません
省12
111
(4): 2020/08/03(月)14:01 ID:mWEkE2T9(1/3) AAS
>>106
より数学的な議論は、下記のmathoverflowです(^^;

(>>92-93より)
数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです

>>28より再録)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
省16
130
(3): 2020/08/07(金)15:56 ID:kwZAOrGY(1) AAS
>>111補足

1)下記、非正則な分布は、積分値が無限大に発散してしまい、全事象の確率は1であるというコルモゴロフの確率の公理に反しています
 ですので、まっとうな確率計算はできません
2)例えば、1〜100まで100枚のカード各1枚あるとします。典型的な一様分布です。
 番号を点数として、1点〜100点とします。
3)カードをよくシャッフルして伏せて、カードを1枚とる。二人の対戦ゲームとします。点数が上なら勝ち
 もし、自分が90点代、例えば、91点だとします。上位1割の点数ですから、勝つ確率9割です
省18
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 2.107s*