[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
57
(7): 2020/07/28(火)13:39 ID:U9fCF8yb(4/6) AAS
>>55
”This is no different to saying that (an) is equivalent to (bn) if and only if
an = bn for all sufficiently large n. Thus the elements in our new system are
equivalence classes of real sequences, denoted by <an>. We now define the
relevant operations and order of our new system.”

1.Fr フレシェ・フィルター 使って、
 ”to saying that (an) is equivalent to (bn) if and only if an = bn for all sufficiently large n. ”
省14
58: 2020/07/28(火)13:43 ID:U9fCF8yb(5/6) AAS
>>57

つづき

9.その説明が、下記2013年12月09日にmathoverflowで、議論されている
 二人の数学Dr Alexander Pruss 氏と Tony Huynh氏 の説明で
 二人は、「時枝の議論は測度論的に不成立」と言っています(>>28

>>28より再録)
外部リンク:mathoverflow.net
省10
59: 2020/07/28(火)13:51 ID:U9fCF8yb(6/6) AAS
>>57 タイポ訂正

4.一方時枝は、数列 (an) で、ある自然数数 ここではmとして、mより大きな数列 (an) の数値が分かれば
 その値から、am (あるいは i <m なる ai )の値が分かるという主張
  ↓
4.一方時枝は、数列 (an) で、ある自然数 ここではmとして、mより大きな数列 (an) の数値が分かれば
 その値から、am (あるいは i <m なる ai )の値が分かるという主張

自然数数→自然数
省1
60: 2020/07/28(火)21:50 ID:96c6EGvu(3/3) AAS
>>57
>6.それって、明らかにムリゲーでしょw。なぜなら、数列 (an) のシッポとそれより前の am ないし i <m なる ai の値 は、無関係なんだから
同値類と決定番号が理解できないアホにはそう思えるんだろうね
100列作れば単独最大の決定番号はたかだか1列なんだから代表からのカンニングに失敗するもたかだか一列
という論理が理解できないんだろう
バカには無理なので諦めて下さい
61: 2020/07/29(水)00:57 ID:+yeFOzcU(1/4) AAS
>>57
>7.そして、それは、大学の確率教程のIID(独立同分布)を知っていれば、反例になることはすぐ分かる
> 大学の確率教程のIID(独立同分布)を使って、確率変数 X1,X2,・・・Xn,・・・なる可算無限数列を作れば
> コイントスなら確率1/2、サイコロなら確率1/6 なととなって、確率99/100%なんて、どこからも出てこない
コイントスだろうがサイコロだろうが実数だろうが時枝解法なら確率99/100以上です。
時枝解法は当てずっぽう解法ではなく代表から情報をもらう解法ですから、当てずっぽうでの確率は関係ありません。
バカには無理なので諦めて下さい。
62: 2020/07/29(水)00:59 ID:+yeFOzcU(2/4) AAS
>>57
>確率99/100%なんて、どこからも出てこない
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
から出てきますけど?
バカには無理なので諦めて下さい。
63: 2020/07/29(水)01:11 ID:+yeFOzcU(3/4) AAS
>>57
もし
「さて, 1〜100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
を否定したいなら、n>m かつ n<m を満たす自然数の組n,mの例を挙げて下さいねー
106
(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/03(月)07:34 ID:duI4lbde(1) AAS
>>102 補足
>もし、-1 ちょうどか、大きいなら、積分は発散し、非正則な分布になって、確率計算はできません
>(ご存知、ベキ数が-1では、その無限和は(あるいは積分は)、発散します(下記、高校数学の美しい物語 ご参照))
>ベキ数が-1 より小さい場合にのみ、積分は収束し、確率計算が可能になります。

時枝の決定番号は、”ベキ数が-1 より小さい”どころか、負べきでさえありません
”ベキ数が正”です
積分(又は和)は発散し、非正則な分布になって、確率計算はできません
省12
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.022s