[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
529(3): 2021/12/08(水)13:54 ID:tPmP8J4x(1/2) AAS
落ちこぼれは、悲しいね
下記を100回音読したらどうだ?
外部リンク:ja.wikipedia.org
順序数
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。だがそれで終わりではない。無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。
省1
530(1): 2021/12/08(水)13:54 ID:tPmP8J4x(2/2) AAS
>>529
つづき
外部リンク:ja.wikipedia.org
最小の非可算順序数(英: First uncountable ordinal)ω1の存在は、選択公理によらずに示すことができる(ハルトークス数を参照)。ω1は極限順序数で、すべての可算な順序数を含む非可算集合である。ときに Ω とも表記される。その濃度は最小の非可算基数 アレフ1 に等しい。
外部リンク:ja.wikipedia.org
到達不能基数
著者によっては非可算性を要求しないこともある(その場合アレフ0 は強到達不能基数)。弱到達不能基数は Hausdorff (1908)、強到達不能基数は Sierpi?ski & Tarski (1930) および Zermelo (1930) によって導入された。
省5
531: 2021/12/08(水)15:49 ID:umaeoeyg(1) AAS
>>529
どこにも「有限で成り立つことは無限でも成り立つ」なんて書かれてないけど
日本語も読めない落ちこぼれ?
532: 2021/12/08(水)20:33 ID:p4epif7+(1) AAS
>>529-530
レーヴェンハイム・スコーレム関係なくなったな
やっぱり全然理解できない白痴だったな S ETAは
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.027s