[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
142(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)11:19 ID:QmjvhqAQ(4/7) AAS
>>115
>選択公理を認めるなら、いかなる列の決定番号も自然数 つまり有限です
>∞になることなどあり得ません(∞は自然数ではありませんw)
<赤ペン先生>(^^
1.それ、”選択公理”の問題ではない、レーヴェンハイム-スコーレだよ。一階の理論か、一階以上の理論かの問題
2.レーヴェンハイム-スコーレム:「定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す」
レーヴェンハイム-スコーレム:「一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない」
省13
143: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)11:19 ID:QmjvhqAQ(5/7) AAS
>>142
つづき
外部リンク:ja.wikipedia.org
自然数
(抜粋)
集合論においては、自然数は
物の個数を数える基数のうちで有限のものであると考えることもできる
省14
146: 2020/08/09(日)12:45 ID:O3Ql50FC(3/5) AAS
>>142
>それ、”選択公理”の問題ではない
馬鹿丸出し
選択公理を仮定しなければR^N/〜の代表系の存在は保証されない。
代表系が存在しなければ決定番号は定義できない。
瀬田はまったく分かってないな
149: 2020/08/09(日)14:52 ID:k7ukMcet(2/3) AAS
>>142
レーヴェンハイム-スコーレムの定理で何をいおうとしてるのか不明だが
もし「決定番号が∞になり得る」といってるなら、正真正銘の馬鹿である
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.021s