[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
106(5): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/03(月)07:34 ID:duI4lbde(1) AAS
>>102 補足
>もし、-1 ちょうどか、大きいなら、積分は発散し、非正則な分布になって、確率計算はできません
>(ご存知、ベキ数が-1では、その無限和は(あるいは積分は)、発散します(下記、高校数学の美しい物語 ご参照))
>ベキ数が-1 より小さい場合にのみ、積分は収束し、確率計算が可能になります。
時枝の決定番号は、”ベキ数が-1 より小さい”どころか、負べきでさえありません
”ベキ数が正”です
積分(又は和)は発散し、非正則な分布になって、確率計算はできません
省12
107: 2020/08/03(月)12:08 ID:SY3ylgSX(2/11) AAS
>>106
>ところが、問題の決定番号なるものは、あきらかに 非正則な分布です
確率計算で使う100個の決定番号の組(N^100の元)はsが定まると同時に定まります。
sから100列を作る方法やR^N→R^N/〜の切断を決めると、写像f:R^N→N^100、f(s)=(d1,d2,...,d100) も決まることを理解しましょう。
N^100上の定まった一点は分布の意味を持たない、強いて分布と言うなら正則な一点分布です。非正則ではありません。
Prussさんは1週間ほどで間違いを認めたのに、あなたは5年経っても認められないようですねー
108: 2020/08/03(月)12:32 ID:SY3ylgSX(3/11) AAS
>>106
>つまり、決定番号の確率計算で、非正則な分布を使っているということが見えないから、如何にも当たるように見えて、みんなが引っ掛かるのです!
いいえ、多くの人が引っかかったのは、箱入り無数目の確率をP(d1>d2)と勘違いしたからです。
正しい確率はP(a>b)です。(ここでaはd1とd2のいずれかをランダムに選んだ方、bは他方。)
非正則な分布を使っているというトンデモ主張はあなただけですね。
109: 2020/08/03(月)13:12 ID:oNzb06v/(1/5) AAS
>>106
>時枝さんのやっていることは
>何かの手段で、ある有限のDを与えると
>ある確率(時枝記事では99/100)で、D>=d とできるというもの
>(ここに、dは問題の数列の決定番号)
上記は全くの誤りであり嘘
>>101を読みましょう
省21
111(4): 2020/08/03(月)14:01 ID:mWEkE2T9(1/3) AAS
>>106
より数学的な議論は、下記のmathoverflowです(^^;
(>>92-93より)
数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです
(>>28より再録)
外部リンク:mathoverflow.net
Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13
省16
115(2): 2020/08/03(月)14:16 ID:oNzb06v/(3/5) AAS
選択公理を認めるなら、いかなる列の決定番号も自然数 つまり有限です
∞になることなどあり得ません(∞は自然数ではありませんw)
つまりいかなる100列を持ってきてもその決定番号は全て有限の自然数です
当然その中の最大元が存在します
最大の決定番号を持つ列が1つだけなら、
その1つを選ばない限り、決定番号d(s^k)が
他の列の決定番号の最大値D(s^k)より小さいので
省11
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.043s