[過去ログ]
現代数学の系譜 カントル 超限集合論他 3 (548レス)
現代数学の系譜 カントル 超限集合論他 3 http://rio2016.5ch.net/test/read.cgi/math/1595034113/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
93: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/02(日) 16:50:12.87 ID:NrBYtRST >>92 つづき Math Dr. Tony Huynh氏も分かっているね 時枝における、「確率測度として成り立っていない!」は、ヴィタリ集合的なものではなく、 (全事象の積分ないし和が無限大に発散する)「非正則分布になる」ので、 ”全事象の確率は1であるというコルモゴロフの確率の公理”をうまく満たすことができない ってこと Math Dr. Tony Huynh氏も分かっているねぇ〜(^^ 以上 http://rio2016.5ch.net/test/read.cgi/math/1595034113/93
111: 132人目の素数さん [sage] 2020/08/03(月) 14:01:35.78 ID:mWEkE2T9 >>106 より数学的な議論は、下記のmathoverflowです(^^; (>>92-93より) 数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです (>>28より再録) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 (抜粋) answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏 ・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. (引用終り) Math Dr. Tony Huynh氏も分かっている ”If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.” つまり ”If it were somehow possible to put a 'uniform' measure on the space of all outcomes”が実現できれば なのだが 'uniform' measure=一様分布 (「一様分布」は、>>67の非正則事前分布の説明に出てくるね) Math Dr. Tony Huynh氏も分かっているね 時枝における、「確率測度として成り立っていない!」は、ヴィタリ集合的なものではなく、 (全事象の積分ないし和が無限大に発散する)「非正則分布になる」ので、 ”全事象の確率は1であるというコルモゴロフの確率の公理”をうまく満たすことができない ってこと Math Dr. Tony Huynh氏も分かっているねぇ〜(^^ 以上 http://rio2016.5ch.net/test/read.cgi/math/1595034113/111
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.029s