[過去ログ]
現代数学の系譜 カントル 超限集合論他 3 (548レス)
現代数学の系譜 カントル 超限集合論他 3 http://rio2016.5ch.net/test/read.cgi/math/1595034113/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
7: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/18(土) 10:16:29.33 ID:ywyns0bH なお、時枝w <転載> Inter-universal geometry と ABC予想 (応援スレ) 47 https://rio2016.5ch.net/test/read.cgi/math/1590418250/583 583 自分:現代数学の系譜 雑談 ◆yH25M02vWFhP [] 投稿日:2020/06/06(土) 09:46:06.53 ID:SrYikU2t [5/10] (参考:>>370より) 現代数学の系譜 工学物理雑談 古典ガロア理論も読む80 https://rio2016.5ch.net/test/read.cgi/math/1578091012/50-51 (抜粋) 時枝問題(数学セミナー201511月号の記事) 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 (引用終り) <証明> 勝つ戦略はありません! 一目ですw(^^; QED!! http://rio2016.5ch.net/test/read.cgi/math/1595034113/7
8: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/18(土) 10:19:03.66 ID:ywyns0bH >>7 前スレより https://rio2016.5ch.net/test/read.cgi/math/1576852086/878 「反例の存在証明」 <まず確認> 1.箱への数の入れ方は、「どんな実数を入れるかはまったく自由」である 2.したがって、”独立同分布である i.i.d. IID”(下記)で、箱に数を入れることは可能 3.時枝記事の”勝つ戦略”なるものは 「ある1つの箱を残して、他の箱を全て開けることを許せば、 その1つの箱の実数を 確率99%(あるいは確率1-ε(εは任意に小さく取れる))で的中できる」 ということだった <反例証明> 1.”独立同分布 i.i.d. IID”で、箱に数を入れるとする (可算無限個の確率変数を扱うことは、大学レベルの確率論&確率過程論の射程内である) 2.IIDとして、サイコロで箱に数を入れれば、的中確率は1/6である どの箱も例外無し。どの1つの箱も 確率99%にならないので、反例となる 3.区間[0,1]の一様分布から、任意の実数を選んで IIDで 数を入れる ルベーグ測度では区間[0,1]の1点r( 0 =< r =< 1 ) の測度は0(∵零集合)で、的中確率0 これも、反例となる QED (補足:”独立”だから、問題の箱以外を開けても、問題の箱の確率には 何ら影響しない。サイコロなら1/6、区間[0,1]の一様分布内の1点rなら的中確率0) w(^^; この「反例証明」が分からないのは、小学生レベルの”数学落ちこぼれ”ww (参考) https://www.practmath.com/iid/ 実用的な数学を 2019年6月20日 投稿者: TAKAN 独立同分布である i.i.d. IID (抜粋) || 同じ分布のデータは互いに不干渉だよ これは「確率変数を別々に扱えるよ」という『仮定』です。 これが仮定されていると、非常に計算がしやすくなります。 相関を考えなくて良いので、共分散などを使う必要がありません。 なにせ条件付き確率の発想から分かる通り、独立性は特別なものです。 といっても、そうそうおかしなことにはならないわけですけど。 (引用終り) http://rio2016.5ch.net/test/read.cgi/math/1595034113/8
18: 132人目の素数さん [sage] 2020/07/18(土) 17:57:25.89 ID:MUPMdT1w 84スレ https://rio2016.5ch.net/test/read.cgi/math/1594354136/40-42 に、ここの>>7-10を抜粋引用の上、徹底的に反駁してやったので読めw http://rio2016.5ch.net/test/read.cgi/math/1595034113/18
92: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/02(日) 16:49:54.11 ID:NrBYtRST >>90 補足 時枝記事(>>7 ご参照)では 決定番号dなるものを使う 1.決定番号dの範囲は、有限では収まらない。1〜∞ を渡る 2.時枝のキモは、ある有限のDをうまく選ぶと、確率99/100で、D >= d とできるというもの 3.もし、決定番号dが、正規分布のように、dの大きなところで、早く減衰して、d→∞ で その頻度が0になる場合は、正則分布になり、確率計算は正当化できる 4.一方、時枝記事の決定番号dは、減衰しない。だから、非正則分布になり、確率測度として正当化できず、確率計算に使えない(∵確率の和を1に出来ないなど) 卑近な例では、>>90で説明したような、試験の点数で 点数の上限がなく、いくらでも高得点者が居るような場合 ある有限のD点を基準として、それより点数に低い人は何パーセントと言っても、いくらでも高得点者が居るような場合は、確率計算に乗りませんね 5.それを、数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです (>>28より再録) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 (抜粋) answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏 ・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. (引用終り) Math Dr. Tony Huynh氏も分かっている ”If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.” つまり ”If it were somehow possible to put a 'uniform' measure on the space of all outcomes”が実現できれば なのだが 'uniform' measure=一様分布 (「一様分布」は、>>67の非正則事前分布の説明に出てくるね) つづく http://rio2016.5ch.net/test/read.cgi/math/1595034113/92
140: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/08/09(日) 08:24:12.79 ID:QmjvhqAQ >>139 補足 さて、時枝をもう少し具体例に落として、考えてみよう (>>7 時枝記事(数学セミナー201511月号の記事)ご参照) (>>37の)フレシェフィルターによる、時枝の可算無限数列のシッポの同値類 (これだけでは何も新しいことは言えないが、考察の手がかりには なる) 1)簡単に2つの可算無限数列x,yで考えよう いま、具体例として、無理数の無限小数展開の小数部分を考える 10進で、各桁は0〜9の数で、この可算無限数列が得られる (例えば、π=3.14159 26535 89793・・で、小数点以下の”14159 26535 89793・・”を考えるってこと) 2)フレシェフィルターは、これだけでは何も言えないが、超準解析(ノンスタとも)と繋がっているところが良いね ”14159 26535 89793・・”の時枝の同値類を考える 例えば、先頭の有限部分を変えた ”x1,x2,x3,x4, 9 26535 89793・・”などは、その例だ(x1,x2,x3,x4・・・などは任意の実数で可) これらで、数列xとその同値類を考える 3)さて、時枝さんのやっていることは、別の数列yから、ある有限の決定番号dyを得て 問題の数列xの決定番号dxとの比較で、dx < dy となっていれば、勝ち つまり、数列xにおいて、dy+1番目より大きいシッポの数を知って、数列xの代表からdy番目の数列xの数が的中できるという 4)ところが、>>130で書いたように、決定番号はその分布が非正則。つまり、コルモゴロフの確率の公理を満たすことができない だから、P(dx < dy)=1/2 (つまり確率1/2) という計算が正当化されない 5)フレシェフィルターに戻ると、x1,x2,x3,x4・・・などは、上記のように別に 10進の 0〜9 に限らない。任意の実数で良いのだ とすると、代表のdy番目の数は、「0〜9 に限らない 任意の実数」となっている可能性が大 そういうことを、確率計算に折り込む必要があるが、それも難しい(不可能でしょ) 6)ここらを批判しているのが、mathoverflowでの二人の数学Dr Alexander Pruss 氏と Tony Huynh氏です!(>>92 ご参照) 以上 つづく http://rio2016.5ch.net/test/read.cgi/math/1595034113/140
169: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/09/12(土) 17:41:53.30 ID:cnqeiEp4 >>160 補足 時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる 呪文は、IID(独立同分布)(>>8-9)! 1.独立だから、問題の箱以外を開けても、問題の箱とは無関係 2.同分布だから、どの箱も、別の確率になることはない さらに、おかしなこと 1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2 サイコロで1〜6の数なら確率1/6 閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから) 2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている どんな確率現象でも、一律99%。これはおかしい なぜ、こんなおかしな事が? それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^ http://rio2016.5ch.net/test/read.cgi/math/1595034113/169
195: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/09/22(火) 12:14:12.85 ID:qkl/9znF >>188 再録 (引用開始) 1.不成立の証明は、反例を一つ提示すれば、終わる 時枝に対し、IID(独立同分布)(>>8-9)が、反例になる それで、証明は終わっている ・独立だから、他の箱を開けてもだめ ・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない (引用終り) (>>169より) 時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる 呪文は、IID(独立同分布)(>>8-9)! 1.独立だから、問題の箱以外を開けても、問題の箱とは無関係 2.同分布だから、どの箱も、別の確率になることはない さらに、おかしなこと 1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2 サイコロで1〜6の数なら確率1/6 閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから) 2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている どんな確率現象でも、一律99%。これはおかしい なぜ、こんなおかしな事が? それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^ http://rio2016.5ch.net/test/read.cgi/math/1595034113/195
203: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/10/01(木) 15:15:00.19 ID:7fZLD5Mp 再録 (引用開始) 1.不成立の証明は、反例を一つ提示すれば、終わる 時枝に対し、IID(独立同分布)(>>8-9)が、反例になる それで、証明は終わっている ・独立だから、他の箱を開けてもだめ ・同分布だから、サイコロを使えば、確率1/6にしかならない。99/100にはならない (引用終り) (>>169より) 時枝(>>7)が成立しないことは、大学教程の確率論・確率過程論を、学んだ人にはすぐ分かる 呪文は、IID(独立同分布)(>>8-9)! 1.独立だから、問題の箱以外を開けても、問題の箱とは無関係 2.同分布だから、どの箱も、別の確率になることはない さらに、おかしなこと 1.箱の数として、ある確率現象を考える。コイントスの0,1なら確率1/2 サイコロで1〜6の数なら確率1/6 閉区間[0,1]の一様分布の実数1点的中は、確率0(∵零集合だから) 2.ところが、時枝さんの方法では、確率現象の依存性が消えてしまっている どんな確率現象でも、一律99%。これはおかしい なぜ、こんなおかしな事が? それは、思わず知らず 非正則な分布の上で、確率計算をしてしまっているから(>>160)です(^^ (積分範囲が、∞になる場合は、裾が1/xつまり、指数でいえば-1乗よりも早く減衰しないと、積分値は発散します。下記 裾の重い分布などご参照) なお、(>>183より再録)時枝の記事の後半で、おかしなことが書いてある 1)数列のシッポだから、ビタリ風の非可測集合と即断しているが、そもそも可算無限次元のR^∞には、計量が入らない(自乗総和が無限大に発散する) 計量を入れるなら、ヒルベルト空間などに制限する必要があるが、そこの問題ではない 時枝戦略の本質的問題点は、決定番号の分布が非正則分布になり、確率計算ができないことにある 2)確率変数の独立の定義に、イチャモンつけている しかし、「確率変数の無限族は,任意の有限部分族が独立のとき,独立, と定義される」という表現は、コンパクト性定理でも使われている表現で、まっとうなものです (下記 渕野 などご参照) 時枝氏の書いていることは、ちょっと変です 結局、時枝記事の戦略は成り立ちません! つづく http://rio2016.5ch.net/test/read.cgi/math/1595034113/203
542: 132人目の素数さん [] 2022/01/28(金) 14:34:30.29 ID:OCJDS5eR 転載しておく Inter-universal geometry と ABC予想 (応援スレ) 64 https://rio2016.5ch.net/test/read.cgi/math/1641704497/594 594 名前:132人目の素数さん[sage] 投稿日:2022/01/28(金) 07:44:33.71 ID:341TuiYA >>7 追加 > ”(スレ55 https://rio2016.5ch.net/test/read.cgi/math/1623558298/158より) > <上昇列 0<・・・<ω が有限列にしかなり得ない > ことも分からん「考えなしの素人」に数学はムリ” 反例が見つかった(下記)w 下記のOrdinal arithmetic ・Addition で、... < 0' ・Multiplicationで、... < 01 ・Exponentiationで、... < (0,1) www https://en.wikipedia.org/wiki/Ordinal_arithmetic Ordinal arithmetic Addition The first transfinite ordinal is ω, the set of all natural numbers. For example, the ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like 0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ... This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors. Multiplication Here is ω・2: 00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 < ..., which has the same order type as ω + ω. Exponentiation For instance, ω^2 = ω・ω using the operation of ordinal multiplication. Note that ω・ω can be defined using the set of functions from 2 = {0,1} to ω = {0,1,2,...}, ordered lexicographically with the least significant position first: (0,0) < (1,0) < (2,0) < (3,0) < ... < (0,1) < (1,1) < (2,1) < (3,1) < ... < (0,2) < (1,2) < (2,2) < ... Here for brevity, we have replaced the function {(0,k), (1,m)} by the ordered pair (k, m). (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595034113/542
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.032s