[過去ログ]
現代数学の系譜 カントル 超限集合論他 3 (548レス)
現代数学の系譜 カントル 超限集合論他 3 http://rio2016.5ch.net/test/read.cgi/math/1595034113/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
42: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/27(月) 21:41:57.91 ID:slbIBvLt >>39 補足 https://arxiv.org/pdf/1212.5740.pdf Filters and Ultrafilters in Real Analysis 2012 Max Garcia Mathematics Department California Polytechnic State University Abstract We study free filters and their maximal extensions on the set of natural numbers. We characterize the limit of a sequence of real numbers in terms of the Fr´echet filter, which involves only one quantifier as opposed to the three non-commuting quantifiers in the usual definition. We construct the field of real non-standard numbers and study their properties. We characterize the limit of a sequence of real numbers in terms of non-standard numbers which only requires a single quantifier as well. We are trying to make the point that the involvement of filters and/or non-standard numbers leads to a reduction in the number of quantifiers and hence, simplification, compared to the more traditional ε, δ-definition of limits in real analysis. Contents Introduction . . 1 1 Filters, Free Filters and Ultrafilters 3 1.1 Filters and Ultrafilters . . .. 3 1.2 Existence of Free Ultrafilters . . . . . . 5 1.3 Characterization of the Ultrafilter . . . . . . 6 2 The Fr´echet Filter in Real Analysis 8 2.1 Fr´echet Filter . . . . . . . . . 8 2.2 Reduction in the Number of Quantifiers . . .. . . 10 2.3 Fr´echet filter in Real Analysis . . . . . . . 11 2.4 Remarks Regarding the Fr´echet Filter . . . . . 12 3 Non-standard Analysis 14 3.1 Construction of the Hyperreals *R . . . . . 14 3.2 Finite, Infinitesimal, and Infinitely Large Numbers . . . . . . . 16 3.3 Extending Sets and Functions in *R . . . . . . . . . . . . . . . 20 3.4 Non-Standard Characterization of Limits in R . . . . . . . . . 23 A The Free Ultrafilter as an Additive Measure 25 http://rio2016.5ch.net/test/read.cgi/math/1595034113/42
43: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/27(月) 21:45:28.54 ID:slbIBvLt >>42 これは、 フレシェ・フィルターなどを使う”non-standard numbers”、いわゆる超準解析についての論文ですね http://rio2016.5ch.net/test/read.cgi/math/1595034113/43
46: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/27(月) 23:02:30.88 ID:slbIBvLt >>42 例えば ”We are trying to make the point that the involvement of filters and/or non-standard numbers leads to a reduction in the number of quantifiers and hence, simplification, compared to the more traditional ε, δ-definition of limits in real analysis.” ってあるよね つまり、 ”traditional ε, δ-definition of limits in real analysis” に対して、Frechet Filter とか、 Ultrafiltersとかを使って、 ”Non-Standard Characterization of Limits in R”(いわゆる超準解析) を展開することを論じている 「同値関係を別の方法で再定義するってだけ」? あほらし おへそが茶を沸かすだなw http://rio2016.5ch.net/test/read.cgi/math/1595034113/46
50: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/27(月) 23:44:24.85 ID:slbIBvLt >>49 タイポ訂正 「ランダムな可算無限数列のシッポの箱を開けたら、開けたところの直前のまだ開けていない箱が、確率99%で的中できる」というデタラメ命題が主張するけど ↓ 「ランダムな可算無限数列のシッポの箱を開けたら、開けたところの直前のまだ開けていない箱が、確率99%で的中できる」というデタラメ命題が主張するけど 追加 ”On the set N of natural numbers, the set of infinite intervals B = { (n,∞) : n ∈ N} is a Frechet filter base,” って、”the set of infinite intervals B = { (n,∞) : n ∈ N}”って、フレシェ・フィルターに”∞”使われていますよwww(^^ 当然だけどな 超準(ノンスタ)だから、 (>>42より) ”3.2 Finite, Infinitesimal, and Infinitely Large Numbers . . . . . . . 16” ですからね、Infinitely Large Numberも扱いますよねwww(^^ http://rio2016.5ch.net/test/read.cgi/math/1595034113/50
54: 132人目の素数さん [sage] 2020/07/28(火) 11:04:39.20 ID:U9fCF8yb >>42 補足 下記PDFで ”This new system would be constructed in a manner similar to Cauchy’s construction of the real numbers” ”Let us consider the factor ring R~^N = R^N/ 〜Fr where 〜Fr is the equivalence relation defined by (an)〜Fr(bn) if and only if {n : an = bn} ∈ Fr. This is no different to saying that (an) is equivalent to (bn) if and only if an = bn for all sufficiently large n. ” ここに、Frは、フレシェ・フィルターです。 なるほど、なるほど、フレシェ・フィルターを使って、”similar to Cauchy’s construction of the real numbers”をやる ”where 〜Fr is the equivalence relation defined by (an)〜Fr(bn) if and only if {n : an = bn} ∈ Fr.” 数列のシッポの同値を使ってね そうすると、”Non-standard Analysis 3.1 Construction of the Hyperreals *R ” が出る! 全部、きっちりと、論文として書いてありますなぁ〜!www(^^; 2012年の論文に〜!! wwww(゜ロ゜; https://arxiv.org/pdf/1212.5740.pdf Filters and Ultrafilters in Real Analysis 2012 Max Garcia Mathematics Department California Polytechnic State University (抜粋) P12 2.4 Remarks Regarding the Fr´echet Filter This new system would be constructed in a manner similar to Cauchy’s construction of the real numbers from rational sequences. The elements in this new system would be equivalence classes of real numbered sequences, which take into account sequence convergence (divergence) as well as the rate of convergence (divergence). Ideally, the resulting system will contain elements that can be used to characterize convergence in such a manner that we can do away with the limits of standard analysis or the set constructions from the Fr´echet approach. Let us consider the factor ring R~^N = R^N/ 〜Fr where 〜Fr is the equivalence relation defined by (an)〜Fr(bn) if and only if {n : an = bn} ∈ Fr. つづく http://rio2016.5ch.net/test/read.cgi/math/1595034113/54
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.021s