[過去ログ]
現代数学の系譜 カントル 超限集合論他 3 (548レス)
現代数学の系譜 カントル 超限集合論他 3 http://rio2016.5ch.net/test/read.cgi/math/1595034113/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
39: 132人目の素数さん [sage] 2020/07/27(月) 14:54:54.76 ID:dppBRBhf >>37 補足 Frechet filterの英wikipedia記事と ”Examples On the set N of natural numbers, the set of infinite intervals B = { (n,∞) : n ∈ N} is a Frechet filter base, i.e., the Frechet filter on N consists of all supersets of elements of B.” あと、MathWorld ”Cofinite Filter If S is an infinite set, then the collection F_S={ A ⊆ S:S-A is finite} is a filter called the cofinite (or Frechet) filter on S.” (参考) https://en.wikipedia.org/wiki/Fr%C3%A9chet_filter Frechet filter (抜粋) In mathematics, the Frechet filter, also called the cofinite filter, on a set is a special subset of the set's power set. A member of this power set is in the Frechet filter if and only if its complement in the set is finite. This is of interest in topology, where filters originated, and relates to order and lattice theory because a set's power set is a partially ordered set (and more specifically, a lattice) under set inclusion. The Frechet filter is named after the French mathematician Maurice Frechet (1878-1973), who worked in topology. It is alternatively called a cofinite filter because its members are exactly the cofinite sets in a power set. Contents 1 Definition 2 Properties 3 Examples 4 See also 5 References Examples On the set N of natural numbers, the set of infinite intervals B = { (n,∞) : n ∈ N} is a Frechet filter base, i.e., the Frechet filter on N consists of all supersets of elements of B.[citation needed] External links ・Weisstein, Eric W. "Cofinite Filter". MathWorld. https://mathworld.wolfram.com/CofiniteFilter.html Cofinite Filter If S is an infinite set, then the collection F_S={ A ⊆ S:S-A is finite} is a filter called the cofinite (or Frechet) filter on S. http://rio2016.5ch.net/test/read.cgi/math/1595034113/39
40: 132人目の素数さん [sage] 2020/07/27(月) 15:07:40.84 ID:dppBRBhf >>39 > supersets 補足 supersetは、subsetの逆だな あまり使わないかも https://ejje.weblio.jp/content/superset+of Weblio記号和英辞書での「superset of」の意味 superset of 記号:⊃ (真)部分集合の逆方向 https://mathworld.wolfram.com/Superset.html mathworld.wolfram Superset A set containing all elements of a smaller set. If B is a subset of A, then A is a superset of B, written A superset= B. If A is a proper superset of B, this is written A superset B. http://rio2016.5ch.net/test/read.cgi/math/1595034113/40
42: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/27(月) 21:41:57.91 ID:slbIBvLt >>39 補足 https://arxiv.org/pdf/1212.5740.pdf Filters and Ultrafilters in Real Analysis 2012 Max Garcia Mathematics Department California Polytechnic State University Abstract We study free filters and their maximal extensions on the set of natural numbers. We characterize the limit of a sequence of real numbers in terms of the Fr´echet filter, which involves only one quantifier as opposed to the three non-commuting quantifiers in the usual definition. We construct the field of real non-standard numbers and study their properties. We characterize the limit of a sequence of real numbers in terms of non-standard numbers which only requires a single quantifier as well. We are trying to make the point that the involvement of filters and/or non-standard numbers leads to a reduction in the number of quantifiers and hence, simplification, compared to the more traditional ε, δ-definition of limits in real analysis. Contents Introduction . . 1 1 Filters, Free Filters and Ultrafilters 3 1.1 Filters and Ultrafilters . . .. 3 1.2 Existence of Free Ultrafilters . . . . . . 5 1.3 Characterization of the Ultrafilter . . . . . . 6 2 The Fr´echet Filter in Real Analysis 8 2.1 Fr´echet Filter . . . . . . . . . 8 2.2 Reduction in the Number of Quantifiers . . .. . . 10 2.3 Fr´echet filter in Real Analysis . . . . . . . 11 2.4 Remarks Regarding the Fr´echet Filter . . . . . 12 3 Non-standard Analysis 14 3.1 Construction of the Hyperreals *R . . . . . 14 3.2 Finite, Infinitesimal, and Infinitely Large Numbers . . . . . . . 16 3.3 Extending Sets and Functions in *R . . . . . . . . . . . . . . . 20 3.4 Non-Standard Characterization of Limits in R . . . . . . . . . 23 A The Free Ultrafilter as an Additive Measure 25 http://rio2016.5ch.net/test/read.cgi/math/1595034113/42
49: 現代数学の系譜 雑談 ◆yH25M02vWFhP [sage] 2020/07/27(月) 23:39:29.20 ID:slbIBvLt >>39 補足 https://en.wikipedia.org/wiki/Fr%C3%A9chet_filter Frechet filter より ”Examples On the set N of natural numbers, the set of infinite intervals B = { (n,∞) : n ∈ N} is a Frechet filter base, i.e., the Frechet filter on N consists of all supersets of elements of B.[citation needed]” このExampleは、時枝無関係でしょ つまり、 ”On the set N of natural numbers, the set of infinite intervals B = { (n,∞) : n ∈ N} is a Frechet filter base,” って、繰返すが、時枝無関係の標準的な、自然数N上のフレシェ・フィルターの例じゃんか?(^^ それだったらさ、時枝については何も言えないよね つまり、時枝は、 「ランダムな可算無限数列のシッポの箱を開けたら、開けたところの直前のまだ開けていない箱が、確率99%で的中できる」というデタラメ命題が主張するけど フレシェ・フィルターなんか使っても、何にも言えね〜言えね〜言えね〜www(^^ http://rio2016.5ch.net/test/read.cgi/math/1595034113/49
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.026s