[過去ログ]
現代数学の系譜 カントル 超限集合論他 3 (548レス)
現代数学の系譜 カントル 超限集合論他 3 http://rio2016.5ch.net/test/read.cgi/math/1595034113/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
リロード規制
です。10分ほどで解除するので、
他のブラウザ
へ避難してください。
111: 132人目の素数さん [sage] 2020/08/03(月) 14:01:35.78 ID:mWEkE2T9 >>106 より数学的な議論は、下記のmathoverflowです(^^; (>>92-93より) 数学的にきちん詳しくと論じているのが、mathoverflowの二人の数学Drです (>>28より再録) https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice Denis氏 Dec 9 '13 (抜粋) answered Dec 9 '13 at 17:37 Math Dr. Tony Huynh氏 ・・・If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. (引用終り) Math Dr. Tony Huynh氏も分かっている ”If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.” つまり ”If it were somehow possible to put a 'uniform' measure on the space of all outcomes”が実現できれば なのだが 'uniform' measure=一様分布 (「一様分布」は、>>67の非正則事前分布の説明に出てくるね) Math Dr. Tony Huynh氏も分かっているね 時枝における、「確率測度として成り立っていない!」は、ヴィタリ集合的なものではなく、 (全事象の積分ないし和が無限大に発散する)「非正則分布になる」ので、 ”全事象の確率は1であるというコルモゴロフの確率の公理”をうまく満たすことができない ってこと Math Dr. Tony Huynh氏も分かっているねぇ〜(^^ 以上 http://rio2016.5ch.net/test/read.cgi/math/1595034113/111
114: 132人目の素数さん [] 2020/08/03(月) 14:14:44.41 ID:SY3ylgSX >>111 あなたDrとか権威に弱いですねー モンティホール問題を多くの数学者は間違えましたよー 権威を信仰するのは数学ではなく宗教ですよー http://rio2016.5ch.net/test/read.cgi/math/1595034113/114
116: 132人目の素数さん [] 2020/08/03(月) 14:21:09.39 ID:SY3ylgSX >>111 そもそも自分で解ってないから二人のDrがあと言い出すんでしょ? 解ってたら引用する必要無いですよね? で、解ってないあなたがなんでDrの発言が正しいと判断できるのでしょうか? http://rio2016.5ch.net/test/read.cgi/math/1595034113/116
118: 132人目の素数さん [sage] 2020/08/03(月) 15:33:17.00 ID:mWEkE2T9 >>111 mathoverflowの3人の経歴、ご参考まで ・質問者のDenis氏は、コンピュータサイエンスの人。数学の測度の議論には、全くついていけていないと思ったな(^^ ・Alexander Pruss氏は、en.wikipediaに名前が載るほとの大物。数学Drで、いま哲学系の大学教授だが、数理哲学系みたいだね ・Tony Huynh氏も、数学Drで、”I am currently a Research Fellow in the School of Mathematics at Monash University with David Wood.”とあるから、現役の数学研究者かな mathoveは、結構Q&Aが入り乱れて、分かりにくいと思うが 上記の経歴を頭に入れて読むのが良いと思うよ (参考) https://mathoverflow.net/users/21059/denis Denis ENS Lyon, Lyon, France http://perso.ens-lyon.fr/denis.kuperberg/ Denis Kuperberg http://perso.ens-lyon.fr/denis.kuperberg/papers/CV_en.pdf 2009 ? 2012 PhD Thesis, with Thomas Colcombet, LIAFA, University Paris Diderot. Title : Study of classes of regular cost functions. 2008 ? 2009 Master 2, Theoretical Computer Science, ENS Lyon/Udem Montreal (ranked 2nd/14). https://mathoverflow.net/users/26809/alexander-pruss Alexander Pruss Professor of Philosophy, Baylor University https://en.wikipedia.org/wiki/Alexander_Pruss Alexander Pruss Biography Pruss graduated from the University of Western Ontario in 1991 with a Bachelor of Science degree in Mathematics and Physics. After earning a Ph.D. in Mathematics at the University of British Columbia in 1996 and publishing several papers in Proceedings of the American Mathematical Society and other mathematical journals https://mathoverflow.net/users/2233/tony-huynh Tony Huynh I am currently a Research Fellow in the School of Mathematics at Monash University with David Wood. I completed my PhD in the Department of Combinatorics & Optimization at the University of Waterloo. My supervisor was Jim Geelen. I am mainly interested in graphs, matroids, and combinatorial optimization, but I enjoy dabbling in other areas as well. http://rio2016.5ch.net/test/read.cgi/math/1595034113/118
130: 132人目の素数さん [sage] 2020/08/07(金) 15:56:50.53 ID:kwZAOrGY >>111補足 1)下記、非正則な分布は、積分値が無限大に発散してしまい、全事象の確率は1であるというコルモゴロフの確率の公理に反しています ですので、まっとうな確率計算はできません 2)例えば、1〜100まで100枚のカード各1枚あるとします。典型的な一様分布です。 番号を点数として、1点〜100点とします。 3)カードをよくシャッフルして伏せて、カードを1枚とる。二人の対戦ゲームとします。点数が上なら勝ち もし、自分が90点代、例えば、91点だとします。上位1割の点数ですから、勝つ確率9割です 4)でも、1〜1000まで1000枚のカード各1枚なら? 91点なんて低い点数では、勝てる確率1割以下です 5)1〜nまでn枚のカード各1枚なら、上位1割 つまり (9/10)n以上の点数で、勝てる確率1割以下です 6)では、n→∞ の非正則な分布ではどうか? 非正則な分布は、積分値が無限大に発散してしまい、全事象の確率は1であるというコルモゴロフの確率の公理に反しています ですので、まっとうな確率計算はできません 1億点でも、1兆点でも、有限の点数では、∞に比べて微小であり、まっとうな確率計算ができません。あえて、するなら確率0(ゼロ)です 7)時枝も、決定番号は n→∞ の非正則な分布です。なので、まっとうな確率計算ができません QED(^^ (>>67より) https://ai-trend.jp/basic-study/bayes/improper_prior/ AVILEN Inc 2020/04/14 非正則事前分布とは?〜完全なる無情報事前分布〜 (抜粋) 非正則分布は確率分布ではない!? 非正則な分布とは、一様分布の範囲を無限に広げた分布のことです。(注:正確には、”ようなもの”で、これに限りません) 積分値が無限大に発散してしまいます。これは、全事象の確率は1であるというコルモゴロフの確率の公理に反しています。 (引用終り) 以上 http://rio2016.5ch.net/test/read.cgi/math/1595034113/130
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.025s