[過去ログ]
現代数学の系譜 カントル 超限集合論他 3 (548レス)
現代数学の系譜 カントル 超限集合論他 3 http://rio2016.5ch.net/test/read.cgi/math/1595034113/
上
下
前次
1-
新
通常表示
512バイト分割
レス栞
抽出解除
必死チェッカー(本家)
(べ)
自ID
レス栞
あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索
歴削→次スレ
栞削→次スレ
過去ログメニュー
547: 132人目の素数さん [sage] 2022/03/05(土) 09:21:19.28 ID:hhayz5nm これ、いいね https://mathematics-pdf.com/column/incomplete.html 数学 PDF よしいず コラム > ゲーデルの不完全性定理について ゲーデルはω-無矛盾という仮定のもとで第一不完全性定理を証明しました. ゲーデルの第二不完全性定理とは, 「自然数論の公理を含む無矛盾な形式的体系の無矛盾性は,その体系内では証明できない」というものです. これは,自然数論の公理を含む数学の理論が, 少なくとも有限の立場では自分自身の正しさを示すことは不可能であることを意味します. 証明における主なステップは,次の通りです. 数学を形式的に表現することに関して,「各自然数ごとに表現可能」という概念を導入する. 「原始帰納的」と呼ばれる関数が各自然数ごとに表現可能であるという,「表現定理」を証明する. 数学の証明の一部を「ゲーデル数」と呼ばれる数に対応させることで証明をある意味で計算できるようにする. カントールの対角線論法のアイデアを用いて,「対角化定理」と呼ばれる,論理式における不動点定理のようなものを証明する. 決定不可能な論理式,つまり自分自身もその否定も体系内では証明できないような論理式 U を構成する.(第一不完全性定理) 「体系は無矛盾である」という命題を体系内の論理式として表現する. その論理式を C とおく. 「 C が体系内で証明できるならば U も体系内で証明できる」ということを証明する. このとき,U は体系内では証明できない論理式だから,C もまた体系内では証明できない論理式である. (第二不完全性定理) 上の証明のステップ6において, 「形式的体系が無矛盾である」という命題を表現する論理式の選び方は一通りではありません. クライゼルは,無矛盾性を表現する論理式で, ゲーデルが不完全性定理の証明で用いた論理式とは別のものをとると, それが自然数論の公理を含む形式的体系のなかで証明できる場合があることを注意しました. これは,数学の命題を形式的に表現する絶対的な方法が確定しているわけではないことを示唆しています. 関連書籍 前原昭二(著): 数学基礎論入門,朝倉書店,1977 広瀬健/横田一正(著): ゲーデルの世界,海鳴社,1985 日本数学会(編): 岩波数学辞典第3版 184 数学基礎論,岩波書店,1985 http://rio2016.5ch.net/test/read.cgi/math/1595034113/547
メモ帳
(0/65535文字)
上
下
前次
1-
新
書
関
写
板
覧
索
設
栞
歴
スレ情報
赤レス抽出
画像レス抽出
歴の未読スレ
AAサムネイル
Google検索
Wikipedia
ぬこの手
ぬこTOP
0.023s