[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
419(6): 2021/11/21(日)08:03 ID:fskC7CH9(1/17) AAS
>>413
まず、大前提として、シングルトンでωを定義したのではなく、
順序数 0,1,2,・・n・・,ωを定義したのです
>>405の通り
多重シングルトン関数 fsz:n→{{・・{{{}0}1}2・・}n-1}n n∈N+ω
例
fsz(0)={}0
省31
420(1): 2021/11/21(日)08:04 ID:fskC7CH9(2/17) AAS
>>419
つづき
外部リンク:ja.wikipedia.org
順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数[1]を拡張させた概念である。
外部リンク:ja.wikipedia.org
極限順序数
極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。あるいは、順序数 λ が極限順序数であるための必要十分条件は「λ より小さい順序数が存在して、順序数 β が λ より小さい限り別の順序数 γ が存在して β < γ < λ とできることである」と言ってもよい。任意の順序数は、0 または後続順序数、さもなくば極限順序数である。
省10
421(2): 2021/11/21(日)08:06 ID:fskC7CH9(3/17) AAS
>>419 訂正
まず、大前提として、シングルトンでωを定義したのではなく、
順序数 0,1,2,・・n・・,ωを定義したのです
↓
まず、大前提として、シングルトンでωを定義したのではなく、
順序数 0,1,2,・・n・・,ωを使って、wに相当するシングルトンを定義したのです
だな
422(1): 2021/11/21(日)08:08 ID:fskC7CH9(4/17) AAS
>>421 訂正追加
繰り返すが、「大前提として、シングルトンでωを定義したのではなく、
順序数 0,1,2,・・n・・,ωを定義したのです」。集合族(下記)としてね
ここもだな。 >>421に読み替えてください
424(6): 2021/11/21(日)08:38 ID:fskC7CH9(5/17) AAS
>>419 補足
(引用開始)
>>405の通り
多重シングルトン関数 fsz:n→{{・・{{{}0}1}2・・}n-1}n n∈N+ω
例
fsz(0)={}0
fsz(1)={{}0}1
省21
427(2): 2021/11/21(日)08:49 ID:fskC7CH9(6/17) AAS
>>418 >>423
>{{…{{}}…}}
そこ、fsz(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω>>424だよ
だから、{{…{{}}…}}→{fsz(ω)}={{・・{{・・{{{}0}1}2・・}n-1}n・・}ω}
が対応するよ
{fsz(ω)}は、ω+1が対応するよ
{…{{}}…}は、{{…{{}}…}}の前者ではあるが、
省7
429(3): 2021/11/21(日)08:57 ID:fskC7CH9(7/17) AAS
>>426
>カッコの数が無限なら最外または最内カッコは存在できない(存在したら無限の定義に反する)
意味不明
ノイマン構成 N(=ω)={0,1,2・・・}でも
カッコの数は無限ですけど ∵ カッコの数が有限ならば、無限集合Nができない
なお、なんども書いているが
fsz(ω)={・・{{・・{{{}0}1}2・・}n-1}n・・}ω>>424
省1
433(4): 2021/11/21(日)09:29 ID:fskC7CH9(8/17) AAS
>>429 補足
>>カッコの数が無限なら最外または最内カッコは存在できない(存在したら無限の定義に反する)
そういう 「最外または最内カッコ」の存在に拘るのが、子供だよね
算数の1,2,3・・くらいまでは、ありとしても
じゃ、円周率πの「最外カッコ」は どこ? とか言い出したら、
高等数学は一歩も進まなくなるよ
明らかに、円周率πは、集合論ZFCの中で構成される
省2
434(1): 2021/11/21(日)09:43 ID:fskC7CH9(9/17) AAS
>>433 補足の補足
図形云々の話があったけど
図形もZFC中で集合として構成できるよ、抽象的にね
例えば、ユークリッド平面があって、これは(x、y) |x、y∈R
単位円ならば、x^2+y^2=1 を満たす(x、y)からなる集合だ
確かに、形式的にはカッコ{}を使おうとすれば、使えるけど
ノートに書かれた単位円の図を眺めて、
省4
436(4): 2021/11/21(日)10:08 ID:fskC7CH9(10/17) AAS
>>433 補足の補足の補足
>じゃ、円周率πの「最外カッコ」は どこ? とか言い出したら、
>高等数学は一歩も進まなくなるよ
円周率πなんか、まだまし(πを表す級数の公式でも使えば、なんとかなる)
(0,1)の間の名も無い超越数 r∈R を考える
名無し超越数 rにおいて、これを空集合φから 具体的に書いて
「最外カッコ」を付けるとか、殆ど無意味な議論でしょ
省2
444(6): 2021/11/21(日)13:44 ID:fskC7CH9(11/17) AAS
>>442-443
なんだ、子供が二人か?
(再録)
>名無し超越数 rにおいて、これを空集合φから 具体的に書いて
>「最外カッコ」を付けるとか、殆ど無意味な議論でしょ
ZFC公理系で、集合を構築していくのに、空集合φから出発して、複雑な集合を作る
ここまでは良いよね
省19
446(5): 2021/11/21(日)17:37 ID:fskC7CH9(12/17) AAS
AA省
447: 2021/11/21(日)17:42 ID:fskC7CH9(13/17) AAS
>>446 補足
の部分は、無限集合たる自然数Nのもつ性質そのものだ
つまり、∀n∈N でnは有限だが、列・・の部分は無限長
↓
”列・・の部分は無限長”のところは
>>446の
n :{・・{{{}0}1}2・・} → {0, 1, 2,・・,n-1}
省7
448(1): 2021/11/21(日)17:47 ID:fskC7CH9(14/17) AAS
>>446 補足
これ面白い
下記図で、”The set V5 contains 2^16 = 65536 elements; the set V6 contains 2^65536 elements,”だって
ZFCは、現場の数学では使えない。整数の表現でさえ、爆発していますw
外部リンク:en.wikipedia.org
Von Neumann universe
In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo?Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930.
省8
450: 2021/11/21(日)20:27 ID:fskC7CH9(15/17) AAS
>>449
>>ZFCは、現場の数学では使えない。
>と思うのは数学知らない中卒の貴様だけw
おれは、檜山正幸氏のりだよ
外部リンク:m-hiyama.はてなブログ.com/entry/20171024/1508830602
檜山正幸のキマイラ飼育記 (はてなBlog)
2017-10-24
省7
454(3): 2021/11/21(日)23:23 ID:fskC7CH9(16/17) AAS
>>453
>最外カッコの無い集合なんてZFのどの公理も認めてませんが?
いや、だから、最外カッコのあるなしを判定基準にしたら
複雑な構成の集合では、必ずしも有効な判定基準にならんよね
ZFCの集合は、空集合φから組み立てられている
特に無限集合で、空集合φから組み立てられた複雑な集合になれば、その判定基準は機能しないだろう
前にも言ったが、超越数πを空集合φから組み立てて、最外カッコを示してみなよ>>444
省1
457(2): 2021/11/21(日)23:51 ID:fskC7CH9(17/17) AAS
>>451
何を言っているか分からないが
検索すると、下記がヒットした
これかい?
外部リンク:m-hiyama.はてなBlog.com/entry/20081016/1224144089
檜山正幸のキマイラ飼育記 (はてなBlog)
2008-10-16
省24
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 1.858s*