[過去ログ] 現代数学の系譜 カントル 超限集合論他 3 (548レス)
上下前次1-新
抽出解除 必死チェッカー(本家) (べ) 自ID レス栞 あぼーん
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
139(1): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)07:25 ID:QmjvhqAQ(1/7) AAS
>>135
「グロタンディーク伝説:彼の思考が最初から抽象的で、具体例で考察せずに一般論を構築していたことを示すものだという数学者もいる」
まあ、普通の人が、グロタンディーク伝説をまねしない方が良い。天才以外はね
あなた、時枝ももう少し具体例に落として、考えなよ(^^
(参考)
純粋・応用数学(含むガロア理論)3
2chスレ:math
省13
140(4): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)08:24 ID:QmjvhqAQ(2/7) AAS
>>139 補足
さて、時枝をもう少し具体例に落として、考えてみよう
(>>7 時枝記事(数学セミナー201511月号の記事)ご参照)
(>>37の)フレシェフィルターによる、時枝の可算無限数列のシッポの同値類
(これだけでは何も新しいことは言えないが、考察の手がかりには なる)
1)簡単に2つの可算無限数列x,yで考えよう
いま、具体例として、無理数の無限小数展開の小数部分を考える
省17
141: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)08:24 ID:QmjvhqAQ(3/7) AAS
>>140
つづき
参考(>>37より)
”2つの無限列s1,s2∈R^Nについて
一致する項の番号の集合が
Nの補有限部分集合(つまりNにおける有限集合の補集合)
ならば同値、というだけのことだろう
省17
142(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)11:19 ID:QmjvhqAQ(4/7) AAS
>>115
>選択公理を認めるなら、いかなる列の決定番号も自然数 つまり有限です
>∞になることなどあり得ません(∞は自然数ではありませんw)
<赤ペン先生>(^^
1.それ、”選択公理”の問題ではない、レーヴェンハイム-スコーレだよ。一階の理論か、一階以上の理論かの問題
2.レーヴェンハイム-スコーレム:「定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す」
レーヴェンハイム-スコーレム:「一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない」
省13
143: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)11:19 ID:QmjvhqAQ(5/7) AAS
>>142
つづき
外部リンク:ja.wikipedia.org
自然数
(抜粋)
集合論においては、自然数は
物の個数を数える基数のうちで有限のものであると考えることもできる
省14
151(3): 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)20:01 ID:QmjvhqAQ(6/7) AAS
>>130 補足
> 7)時枝も、決定番号は n→∞ の非正則な分布です。なので、まっとうな確率計算ができません
決定番号は、明らかに上限はなく、自然数全体を渡る。つまり n→∞
このような場合、確率分布は、広義積分(又は和)になります(下記ご参照)
n→∞ まで、積分する(あるいは和を取る)とき
n→∞ で、十分早く減衰する必要があります。単なる減衰ではなく、1/xよりも早く減衰しなければ発散します
(x^k で言えば、べきk が、-1よりも早く減衰しなければ、積分値は発散します。nで言えば、1/nより早く減衰する必要があるってことです)
省17
152: 現代数学の系譜 雑談 ◆yH25M02vWFhP 2020/08/09(日)20:17 ID:QmjvhqAQ(7/7) AAS
>>151 補足
ロングテールとか、裾の重い分布とか言われます
ですが、これらは、確率分布の裾が減衰する分布です
時枝の決定番号は、全く減衰などしません。よって、積分(又は和)は発散し、非正則分布であり、まともな確率計算ができません!!(^^;
(参考)
外部リンク:ja.wikipedia.org
ロングテール
省4
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.036s