[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
上下前次1-新
抽出解除 レス栞
このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
644(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/13(水)21:31 ID:fChrPFrq(6/11) AAS
>>637
追加
外部リンク:ja.wikipedia.org
森田同値
(抜粋)
代数学において、森田同値(もりたどうち、英: Morita equivalence)とは、環論的な多くの性質を保つ環の間の関係のことを言う。これはMorita (1958)において同値関係と双対性に関する記号を定義した森田紀一にちなんで名付けられた。
動機
省7
645(1): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/13(水)21:32 ID:fChrPFrq(7/11) AAS
>>644
つづき
同値不変な性質
多くの性質が加群の圏の対象による森田同値を与える関手によって保たれる。一般的に、(台集合の元や環に依らずに)加群とその準同型のみで定義される加群の性質は、森田同値を与える関手によって保たれる圏論的性質である。
たとえば F(?) が R-Mod から S-Mod への森田同値を与える関手ならば、R 加群 M が次の性質をもつ必要十分条件は S 加群 F(M) がその性質を持つことである:入射的・射影的・平坦・有限生成・有限表示的・アルティン的・ネーター的。森田同値不変とは限らない性質には自由であることや巡回的であることがある。
多くの環論的性質はその環上の加群のことばで述べられるので、これらの性質は森田同値な環の間で保たれる。森田同値な環で共有される性質は森田不変量と呼ばれる。
外部リンク:en.wikipedia.org
省6
646: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/13(水)21:48 ID:fChrPFrq(8/11) AAS
>>644-645
1)森田同値ね(^^;
環上の加群の圏を考えるのが1つか
2)「任意の環は単一対象前加法圏 (preadditive category) とみなすことができる」(>>643)か
3)環の圏という考えがある。これは、結構普通ですね
4)だれか、「環が2圏」(2-圏は下記)とか間違って、David Roberts氏に突っ込まれていた。が、そんな間違いは 私でも分かるぜよw(^^;
(参考)
省12
上下前次1-新書関写板覧索設栞歴
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル
ぬこの手 ぬこTOP 0.029s