[過去ログ] Inter-universal geometry と ABC予想 (応援スレ) 45 (1002レス)
前次1-
抽出解除 レス栞

このスレッドは過去ログ倉庫に格納されています。
次スレ検索 歴削→次スレ 栞削→次スレ 過去ログメニュー
リロード規制です。10分ほどで解除するので、他のブラウザへ避難してください。
415
(2): 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/10(日)13:18 ID:mjl0bfS3(28/41) AAS
>>410
>>410 補足

もう少し補足します

例えば
Φ (or 0; empty set)=空集合

SING(x) (x is a singleton) =シングルトン (=要素が1つだけの集合)
省16
416: 現代数学の系譜 雑談 ◆e.a0E5TtKE 2020/05/10(日)13:19 ID:mjl0bfS3(29/41) AAS
>>415

性質
ツェルメロ・フレンケル集合論の枠組みの中では正則性の公理が「自身を元とする集合」が存在しないことを保証するから、単元集合とその単元集合を含む集合とは必然的に異なる数学的対象を意味するものとなる[1]。
つまり、1 と {1} とは同じものではないし、空集合のみからなる単項集合 {?} は 空集合 ? ではない。また、例えば、{{1, 2, 3}} のような集合も、ただ一つの集合を元(その元自身は単集合ではない)として持つ単集合である。
単集合であることと、その集合の濃度が 1 であることは同値である。自然数の集合論的構成において、自然数の 1 とは単集合 {0} のことと定義される。
公理的集合論において、対の公理からの帰結として単元集合の存在が導かれる。即ち、任意の集合 A に対して、A と A に対して対の公理を適用すれば {A, A} なる集合の存在が保証されるが、これは A のみを元に持ちそれ以外の元は持たないから、単元集合 {A} に他ならない。
ここで A は任意の集合でよい、といっても集合がそもそもまったく存在しない場合には意味がないが、空集合の公理があれば少なくとも空集合 ? は集合になるから、A = ? ととって先の議論は正当化できる。
省3
417
(2): IUT応援団 団員 2020/05/10(日)13:29 ID:vZYbiwt9(20/35) AAS
>>415
>空集合が、公理から導けないとすれば、空集合の存在を公理にする必要がある
>しかし、その必要はないと Kenneth Kunenは いうのです

ええ
Axiom 3 分出公理図式
∃y∀x(x ∈ y ↔ x ∈ z ∧ ϕ(x))
を使えばできますね
省4
前次1-
スレ情報 赤レス抽出 画像レス抽出 歴の未読スレ AAサムネイル

ぬこの手 ぬこTOP 0.034s